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Abstract—We consider the problem of determining the Algorithms using binary proximity sensors have been
paths of multiple, unpredictable moving bodies in a clutteed  proposed for tracking a single agent [5], [13], [20]. For the
environment using weak detection sensors that provide sinig multiple agent tracking case, extensions have been prdpose

crossing information. Each sensor is a beam that, when broke - o . .
provides the direction of the crossing (one bit) and nothing which use classification [17] or constrain the tracking to

else. Using a simple network of beams, the individual paths the real line [_21]- The_ binar)_/ proximity sensors are USU&'_'V
are separated and reconstructed as well as possible, up to modeled as circular disk regions that must cover the trackin
combinatorial information about the route taken. In this setup, region of interest. The assumption of a disk region may not
simple filtering algorithms are introduced, and a low-Cost  yq yegjistic in practice for commonly used sensor modalitie

hardware implementation that demonstrates the practicalty of h i d ve inf d
the approach is shown. The results may apply in settings such Such as acoustic Sensors and passive Inirared Sensors.

as verification of multirobot system execution, surveillace and Recently, in [23] the problem in which one agent travels
security, and unobtrusive behavioral monitoring for wildlife and ~among obstacles and binary detection beams was considered.
the elderly. Algorithms were proposed to determine possible paths fol-

lowed by an agent based only on binary sensor data from
a set ofsensor beamsAn extension was presented in [27],
Understanding the behaviors of agents (people, animalghich proposes and solves a verification problem in which
or robots) in their environments is of foremost importanca claimed behavior of a single agent is validated against an
in various sectors of society. One prominent example cawbservation history from a network of detection and beam
be seen in assisted living communities, where health casensors. In [28], errors in the agent story were considered.
personnel may desire vital information about a patient suclWe build on these results to track multiple agents.
as location and activity in their living space [25]. Another Our ideas for tracking multiple agents differ in several
important example is the allocation of resources such asiportant aspects as compared with previous approaches.
heating, ventilation and cooling (HVAC) in residentialnco  First, we use a simple sensor, the directional beam, that
mercial and industrial spaces, where an estimation of trenly provides the direction of crossing of the agent. This
behavior of agents in buildings can lead to significant sg&in sensor can be implemented in an inexpensive and reliable
in energy consumption [16]. Another major example is irfashion that preserves privacy. Second, our ideas do not
retail stores, where this information can be used analyzequire precise metric information. This allows us to depel
customer flows, traffic trends, and determine optimal oggniralgorithms that are simple to implement and computatignall
hours [1], [2]. Other important problems include trackingefficient. Third, we do not assume a precise dynamical
wildlife movement, sensor assisted child care, and surveinodeling of agents (which can be hard to obtain in practice).
lance. Instead, we provide a base algorithm that can be modified
Multiple-agent tracking is a fundamental application ofo suit different tracking scenarios.
sensor networks that is challenging due to both theoretical The paper is organized as follows. Section Il presents the
and practical issues. On the theoretical side, a trackingoblem formulation. Section Il introduces a base aldnit
algorithm should be able to initiate and terminate trackgpr tracking multiple agents assuming perfect sensing, and
solve data association problems, and take into accourserrancludes a discussion of its limitations. Various modificas
due to sensing [19]. Practical limitations include memoryand extensions to the base algorithm are provided in Section
communication bandwidth, computational power, and byattedV. Section V removes the perfect sensing assumption, and
life of sensor nodes [15]. presents algorithms for detecting and correcting errogs- S
Most tracking methods attempt to estimate the exadion VI presents a hardware architecture that uses inexgens
position of agents in a continuous state space [18], [19],[2 components implementing the algorithms proposed along
In these methods, tracking is done using Bayesian filtergjith illustrative experiments. Conclusions and directiaf
such as the Kalman filter and particle filter. These techriquefurther research are discussed in Section VII.
however, require dynamical modeling of the agents and
reasonably good measurements of the moving agents.

I. INTRODUCTION

Il. PROBLEM FORMULATION
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Fig. 2. Region graph.

ro € R 10 71 € R with the beam labeb~! for the opposite
direction. The corresponding region graph for Figure 1 is
presented in Figure 2.
) o - Let ; be the sequence of crossings for e agent. For

Fig. 1. Three agents moving in a building. the example in Figure 4j; (the green agent) ig—'dlc~!

72 (black agent) i~ 'be f andys (yellow agent) iss= 1~ te.
o o _ . Some interesting problems in this framework are:

Let B be a set of pairwise disjoirieams each of which is Problem 1: Perfect-sensing tracking
an open linear subset df. These beams are line segmentgsjyen the region graple induced by beams and obstacles,
with both endpoints on the boundary &t For example, in - 44 the observation string, present an algorithm to return

Figure 1 the beams are label&d= {a,b,¢,d,¢, f, g}. a set of possiblgj;. Also, we would like to find out what
The collection of obstacles (holes in the polygon and outgfynditions make an exact reconstruction possible.
boundary) and beams induces a decompositiorfzointo In the previous problem, we assume that no two agents

connectgd regions. The environmgnt is decomposed.into a§%u|taneously cross a sensor beam (if they do, there will
R of regionsry, 72, ...7,. These regions are places of intereshe missing observations in the observation strijjg We
that can correspond, for instance, to rooms in buildings Qfjve this problem by first detecting and correcting possibl
sections in a retail store. For example, the beams in Figuggors ing, and then using the algorithms for Problem 1. We
2 divide £ into six two-dimensional regions, in this casefgrmulate this problem as follows:
R={ry,ra, .76 }. N _ Problem 2: Error detection and correction

There will be a number (unknown but finite) of in-  Gjven an observation string that may contain errgts, .,

distinguishableagentsmoving inside the environment. The find algorithms to detect and correct the errors to yield the
trajectory of a single agent is representedipy [0, ] — E,  true observation stringj.

in which [0, ;] represents a time interval and is the final

time. We assume that the set of possible paths for each agent Ill. BASE ALGORITHM FORMULTIPLE AGENT
is restricted so that every beam crossing is transversal (th TRACKING
agent cannot “touch” a beam without crossing). In this section, we present algorithms to reconstruct possi

Let D = {—1,1} be the set of beam directions. The sensopje paths of agents in an environment with directional beams
model depicted in Figure 1 can be obtained by a sensggsuming no sensing errors. We first present an initial base

mappingh : E — Y in whichY = B x D. algorithm, give its space and time complexity, and show its
We definey : [0,t] — Y to be theobservation history |imitations.
or observations collected during a period of tiffiet] from We first provide the following definition:

all the sensors. Lef be theobservation string(or sensor Definition 1: Region Finite Automaton

word) that is obtained fronj by taking the crossing events | et M = (5,5, sinit, 0, R) be a finite state automaton
and preserving only the order, the labels and the directiobsed on the region graggh in which:

(no time informgtion.). 1) The input alphabel =Y Ue.
For example, in Figure 2 we have= {a,b,c,d, e, f, g}. 2) The set of state§ = R U {sinic}.
For eachp € B, 8 denotes the forward direction ang! 3) s is the initial state.

denotes the backward direction. In the example in Figure 1, i 4) § is the state transition functioh: S x % — S.
left to right and bottom to top represent the forward dir@cti 5) R is the set of accept (final) states.

the sensor word ig = g~ ta=td~te tbb~lc leef. Using
this information, we would like to give possible explanato
about the paths of the agents.

We define thaegion graphG as follows. Every vertex in
G corresponds to a region iA. A directed edge is made
fr.om ri € Rtor; € R if and only if an agent Can Cross & - pased on the definition above, we have the following
single beam to go fromr; to .. The corresponding beam .

. observation:
label 5 is placed on the edge. We also create an edge from

The state transition functiofiis defined as followst; =
d(r;, B) if it is possible to go from region; to regionr;
while crossing bean®. The initial states;,,;; is connected
by e-transitions to all the states in the region graph as follows
7 = 0(Sinit,€) for all r € R.



Observation The path of a single agent belongs to the
language ofM¢, L(M¢), in which L(M¢) C £* is the set
of strings that are accepted by the finite automatéan.

The previous observation allows us to propose a base
algorithm to assign observations to agents. The basic iflea o
the algorithm is to iterate through all of the charactershia t
sensor wordj, looking for stringsy; that belong toL(M).
An outline of the algorithm is presented in Algorithm 1.

Fig. 3. An example of ambiguity that can arise in the case of &gents

Algorithm 1 AgentsAssignmenti(G)

of regions.
Input: g[1..m] {Observation string
Output: A[1..m] {Assignment of agen}s A. Properties of the algorithm
1: numberO f Agents < 0 . ] o )
2: for j =1 to |f| do In this sgbsechon, we will discuss ?he propert_les of the.
3 source « GetSourceVertex(jlj], G) base algorithm. Suppose that we are interested in the mini-
4 target « GetTargetVertez(jlj], G) mum number of agents that explain the observation sjing
5 agent — Qsource.GetFirst() We can prove that if we implemerd as a FIFO (First In
6 if agent # NIL then First Out) or LIFO (Last In First Out) queue, we can explain
7: A[j] + agent 7 using the minimum number of agents. This effectively
8: Qtarger-Insert(agent) gives a lower bound on the number of agents. This result
o else is analogous to the one found by [21] in the case of tracking
10: numberO f Agents + + in the real line. Thus, we present the following proposition
11: Alj] < numberO f Agents Proposition 3.1: The algorithm gives the hypothesis with
12: Qiarget-Insert(numberO f Agents) the minimum number of agents that is consistent with
13- end if PROOF: The proof follows from the fact that an agent
14: end for is added only when the crossing cannot be explained with

the set of agents already considered. Since the count of
A prerequisite for the algorithm is to find the regionagentsin each region is precisely determined by the sequenc

graphG. If we are given a geometric representation of thdirectional crossings, it is impossible to have a hypotesi

workspace, rooms, and sensors as an edge list, a cell decdHh fewer agents.
position procedure (see [14], Chapter 6) such as vertidhl ce S
decomposition [7] can be applied to the free space. Aftdd- Fundamental limitations

applying the cell decomposition, the cells that share brsrde  gjnce the beam sensors cannot distinguish between differ-
must be combined [27]. ent agents, there is a limit up to which the paths in the
The algorithm receives as its input the region grépnd  region graph can be reconstructed precisely. As a simple
the observation string, and outputs a vector of assignmentgpservation, we have that if the agents never cross paths,
A which assigns an agent to each observatiop iBased on  then Algorithm 1 perfectly reconstructs each agent path
A andy, we can construcj;. The algorithm will update a A yesult inherent in minimalist sensor networks is ambi-
queue®), for eachr € R that will contain the agents presentyyity, as presented in Figure 3. In Figure 3 a sensor word
in each region. All of the queues are initially empty. § = ce—'db=" can be partitioned in two agents @s = cd
In Line 1 of Algorithm 1,numberO f Agents represents 5ng j» = e~1b=1, or alternatively we can assign = b~
the agent currently being assigned, initialized to 0. Weatee 5,4 §» = e—'d. This problem was described in the context
over the rest of the string. Since each element of the string proximity sensors in [21]. The next section will introduc

ylj] represents a directed edge in the region giéptve can  gome suitable heuristics to eliminate ambiguity in pratic
obtain itssource andtarget vertices. In Line 6, we check if

there is an agent in the respective region queue. If an agent
is available, we assign the observation to the agent (Line 7)
and move the agent to its target region (Line 8). If an agent In this section, we present variations on the base algorithm
is not available, a new agent is created and inserted in titeat will help reduce the ambiguity of path reconstruction.
destination region (Lines 10, 11, and 12). These variations will favor certain hypotheses and willphel

Implementing@,- as a LIFO will give priority to agents the algorithm find a suitable answer to the tracking problem
that are already moving; in a sense, agents with momentuny incorporating prior knowledge about the environment. We
keep moving. On the other hand, a FIFO implementatioalso present ideas that extend the range of applicability of
assigns the agent that has been waiting the longest. the base algorithm. The modifications are simple additions

Algorithm 1 takesO(|g|+ |R|) time andO(|g||R|) space, to the base algorithm that do not significantly alter its time
in which |g| is the length of the string anld?| is the number and space complexity.

IV. VARIATIONS ON THE BASE ALGORITHM



A. Restrictions on the number of agents in each region faster than humans. This modification can be implemented

Suppose that we know the physical limitations of thdn the policy of the queue (Line 5).
regions in the environment (e.qg., fire code restrictionsy. F £ Using ti q ric inf i
example, consider a living room that can be occupied by sing time anhd geometric information
no more thanl0 agents. We can easily incorporate this If we have a time stampassociated with each observation
knowledge by restricting the size of eagh to |Q,.| < u,.,in in g, then we know the time in which an agent enters a
which |Q,| is the size of the queue, angl is an upper bound region. Suppose that for each region, we have the minimum
on the number of agents in each region. This modificatiotime necessary to traverse it (for example, by taking into
can be easily made by checking that the queue is not alreaggcount a bounded speed for agents). We will be able to
at maximum capacity before attempting to insert an agediscard in the assignment of available agents (Line 5) those
(Lines 8 and 12). whose time spent in the region is less than the required time

. to traverse it.
B. Restrictions on the length of the tracks
Another possible modification is that we can associate to Additional applications

each agent a counter variable that will tak_e _into account  |n this subsection, we explore applications beyond path
the number of regions that an agent has visited. We can Ug§onstruction using the framework presented in the prsvio
this region counter to enforce an upper bound on the numbggtions. Even though we might not be able to precisely
of regions that each agent visits. This can be implement@gconstruct the paths of all agents, there is a set of irtteges

by assigning a counter to each agent that is incrementggplems that can be solved in our framework. These ideas
each time an agent visits a region (Lines 8 and 12). Whégyve important applications in areas such as smart energy
the algorithm assigns an agent (Line 5), it checks that thgjocation in buildings, retail store statistics, and silfance:
counter has not exceeded the maximum track length. 1) Queries: Suppose that we have the observation string

Also, we may want to sort each que@g (Line 5) by the  » \we are interested in answering questions such as the
number of regions visited, giving priorities to agents Wlthfouowing:

shorter tracks. 1) Which region was the most visited?

C. Known initial condition 2) Which areas had the most traffic in a certain period of
If we know the number of agents and their initial the day? o ) .
regions, we can use this information to initialize the queue ) \_Nha; was the count of bodies in a given period of
appropriately. We can then proceed with the rest of the time: . )
algorithm. 4) Were there more than 10 agents in any region at any
given time?
D. Different types of agents These ideas are closely related to queries in sensor network

If, in addition to the number of agents and their initial databases (see [29], Chapter 6). The questions above can
regions, we have information about the type of agents ihe easily solved by standard string manipulation algorsthm
each region, we can assign different levels of distinguish&or example, to solve the first question, we can simply
bility [26]. Let T denote a set ofn teams, withm < n.  count the number of characters gnrepresenting incoming
Let! : A — T be a mapping which assigns a team tcedges for each region. For instance, to count the number
each agent. We might have = 1, in which case all the of visitors to regionr, (Figures 1 and 2), we just need to
agents would belong to the same team, and we would retucount the number of occurrences of charactetsf,g~'}.
to the previous subsection. At the other extreme, we migl@imilar simple procedures can be used to solve the remaining
have | as a bijection withm = = with all the agents questions listed above or other questions of interest déggr
belonging to different teams. More useful examples cagounts of agents in regions.
be proposed, for example, assigning colors to the agents,2) Path verification:Also, using the same problem formu-
with T = {red, green, blue} or different types of agents lation, we can deal with problems that involve verificatidn o
T = {human, animal, robot}. paths. Suppose that we want to know whether a given path in

This team information can be used in several ways. Fdhe regionsj..., was followed by an agent. This path may
example, suppose that certain areas are restricted to lsumeegpresent, for example, a certain order of visiting aistea i
or some others allow at most a number of robots. Wgrocery store, certain places in a museum, or a story given by
can implement this modification in the base algorithm byn agent that must be validated [28], [27]. This problem can
associating to each queug,. a m-tuple of upper bounds be framed as an instance of the well knokotal Alignment
U = [u',u?,...,u™] for each type of agent in the regions.Problem(see [11], Chapter 11). The problem is defined as
We can enforce these constraints whenever we insert a névllows: Given two stringgj:., andg, find two substrings
agent into the queues (Lines 8 and 12 of Algorithm 1) 51 IN Pstory and sy in g whose similarity is maximum over

We can also use this information to give priorities wherall pairs of substrings. If the string, is preciselyystory.
assigning which agent is going to exit the region. Fothen the query path is plausible. This problem can be solved
instance, we can give priorities to robots given that theyeno in O(|gsi0ry||9]) time [22].



V. IMPERFECTSENSING CASE

Detection errors are common in sensor networks; there
are numerous efforts described in the literature to attack
this problem. Most approaches assume a distribution on the
sensing errors or a motion model for the agents [6].

In our directional beam sensor model implementation, we
have observed that the only type of error that we get is
a false negativglan observation that is not reported). This
error arises in practice when two bodies cross the direation
beam at the same time. This error may also originate due to (@)
an agent crossing that is not detected, or a packet that wég 4. a) An example of an arrangement of three regions, laree tgates
dropped in the network and did not reach the central nodd°r o bodies; b) the corresponding Counting Finite Auttmna

We see the correction of errors as a preceding step to the
procedure described in Section Ill. Therefore, we will have
a stringy.,-or that may contain missing observations. Fromwhether an observation string is ih(M¢). It is enough
this string, we want to recover the actual strijng to initialize the queues according to the informationrin

For this section, will assume that we know the number off during the execution of the algorithm (using LIFO or
agents in the system. This assumption may be justified by &FO) no additional agents are required, then the string is i
upper bound on the number of agents due to physical spaté)M (). Notice that we do not need an explicit representation

restrictions in buildings. of the automaton. As noted before, the algorithm requires
Since the agents are indistinguishable, we define th@(|R|) space (only the size of the queues are necessary),
following reduced information space [14]. andO(]y|) time.
Definition 2: Counting Information Space The condition thaty ¢ L(M) is sufficient for detecting

Letn; € N be the number of agents in regiop andn be  an error; that is, if this condition is true then there is an a
the total number of bodies; hend€, n; = n. Thecounting error. However, if the observation string is valid with resp
information spaceis defined asZo = {(n1,...,n,) € 10 M, it does not imply there is no error.

NP|>¥n; = n} in which p is the number of regions.
Therefore,|Z¢| = (P1"]"); this is the number of ways to
put n balls (bodies) inp boxes (regions). Even though this
information space is large, we do not have to explicitly deal In order to correct the sensor word, we can find a string in

Observation The errors in stringj. can be corrected by
finding its closest string irL.(M¢).

with it. the language defined hy/- that is close to the observation
Definition 3: Counting Finite Automaton string (). Since it is assumed that only false negative
Using the information space, we can define the followin@rrors occur, only insertions can be considered as valid
finite automaton transformations of the observation string. This approxioma
can be obtained as a special case of the edit distance, and
Me = (2,Zc,n0,0¢), (1) therefore can be computed using a dynamic programming

. . . _ ) . based procedure [4], [24].
in which ¥ is the observation spaceé, Z. is the counting

information spacejy, € Z¢ is an information state that VI. | MPLEMENTATION

corresponds to the initial configuration of bodies in the |n this section, we present the results of our physical
regions. F|nlel!ly,§c 1o x % — I is defined as f0”0V\CS3 implementation of the ideas presented in previous sections
d¢(n, 8) = n' if and only if it is possible to go fromy to " e will first describe an inexpensive architecture that we
by a single agent crossing of the begmn developed to implement the algorithms. We will then present

Figure 4 shows an example of a counting finite automatofhe results of experiments using our hardware implementa-
that has three region® = {ry, 2,73} and three directional tjon.

beamsB = {a, b, ¢} for two bodies. )
Based on the previous definitions we have the following\- Hardware architecture
observation: Agent crossing feedback is achieved through the use of
optical emitter-detector pairs. Laser pointers were chose
because they are inexpensive (about $2 US each) and easily
aimed. The laser pointers were modified to run on external
Based on the above result, we first propose a verificatidmattery packs (3 AA alkaline batteries in series). Simple
algorithm that decides if a string is correct or not. Thenphotodiodes (about $2 US each) were mounted on the
we propose a procedure to reconstruct the true observatiopposite side to detect the laser beams. When an agent
string. crosses a beam, a change in voltage is observed at the output
Using the base algorithm of Section lll, it is clear thatof the photodetector. We built a simple ADC circuit based
there exists a polynomial-time algorithm that can deteaminoff of the LM339 comparator to detect this change.

Observation All observation stringsy belong to the lan-
guage ofM¢, L(M¢) .



We use a Complex Programmable Logic Device (CPLD)
to process the digital outputs from our ADC board. Although
it is possible to detect crossings with the use of a single
emitter-detector pair, false positive errors will be dételcif
an agent begins to cross a beam, but changes direction and
returns to the original region.

Fig. 7. A state machine used to detect the completion andtiireof a
beam crossing (all undisplayed transitions return to t#hE. E state).

laser could run off of a group of AA batteries for over 120
hours.

Fig. 5. An agent in the process of crossing a bidirectionanhe .
9 9 P 9 B. Experimental results

To solve this problem, we placed two emitter-detector We will illustrate the hardware implementation of our

pairs next to each other (the separating distance must B&Cking system with an experiment. For this example, we
less than the width of the agent to be detected). We Cawlll ;how the tracking algorithms described in Sectlo_n [
each set of 2 emitter-detector pairs a bidirectional beam. ViiPPlied 1o two agents. For the purpose of this experiment,
implemented a state machine on our CPLD to distinguis€ created a 5.5’ by 4.25" environment bounded by cinder
true crossings from false positive crossings. An addedfilene?!ocks. Small bricks on the inside of the environment repre-
of this method is that it allows us to detect the direction of€Nt obstacles.

crossing. By visualizing an agent completing a crossing of
this bidirectional sensor, we can determine whether antagen
has truly completed a crossing, or whether it has simply g&=%
started to cross, only to return to the original region befor
crossing. A completed crossing can be seen in Figure 6. The
resulting finite state machine implementation is shown in
Figure 7. (@) (b)

o o + e . Fig. 8. a) A physical implementation of an environment idéhg 4

1] I directional beams and 5 regions; b) the corresponding megiaph of the
b |. | |. environment.

Fig. 6. lllustration of an agent crossing a directional befaom left to
right.

We used two randomly moving agents (see Figure 9)
and placed them inside the environment. We then observed
them with our tracking system for several minutes. A

The total cost of our 4 bidirectional beam (8 physicaground truth trajectory of the agent paths was recorded
beam) system is under $50 US. Experimental testing showeding an overhead camera and OpenCV. Figure 10 shows
our system to be highly reliable. Once the emitter detectdhe ground truth. For the reconstruction algorithm, we
pairs are mounted and properly aimed, we do not find anysed the base algorithm, implementing e&ghas a FIFO
errors for single agent crossings. Additionally, our syste (giving priority to the agents who have been in a region
is energy efficient: Using Altera’s PowerPlay Estimatoe ththe longest). For clarity, only the first several seconds of
current draw after powerup of our 4 directional beam desigmacking are shown. The observation string was recorded as
is calculated to be only 0.072 mA after powerup. Thus, thg = b~ lac 'd ta= ' tde'd~tebdbtd e 'd=tdd~! in
CPLD itself could run for over 37,000 hours from the energyvhich clockwise crossings are represented as forward, and
contained in three alkaline batteries. As for the laser Isgancounter-clockwise backward are represented as reverse. Th
the current draw from a laser was measured to be 2lr&construction based on this string is shown in Figure 1&. Th
mA when running off of a set of 3 AA alkaline batteries.paths found are given by, = b= 'c'd~'dd—'dd—'dd~!
Assuming a standard AA alkaline capacity of 2700 mAh, @nd g, = aa~ b~ 'c tebb e 1d 1.



Fig. 9. Some snapshots of the experiment: a) The two agewmis e
the same region; b) after 3 seconds, one agent has moved tipplee-right
region; c) after 6 seconds, both agents have moved to the-iogve region;
d) after 9 seconds, one agent exits the region.

be

Fig. 11.

A computer-reconstructed path based on our algorit

common pattern observed is that people tend to move in
small groups in retail stores. These probabilistic ideas ca

incorporated into our framework without major modifica-

tions.

One interesting problem in our framework is that of sensor
placement. Given an environmeht we would like to find
a proper placement of beams to obtain a good tracking
performance, so as to reconstruct agents paths as acguratel
as possible. Related work can be found in the sensor network

lite
Fig. 10. A ground truth path of 2 agents moving in the envirentn

VIlI. CONCLUSIONS ANDFUTURE WORK

rature [8], [10].
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agents using inexpensive, weak detection sensors. We de-
signed and implemented a low-cost, low energy consumption
hardware architecture to demonstrate the practicalityusf o [y
proposed approach. 2]

From the hardware architecture point of view, we are{i}
currently working on a wireless deployment of our system.
We have considered using Xbee modules that are relatively
inexpensive, small, and easy to configure for small sensdP!
networks. They could be used to allow our tracking system
to be more flexible and mobile. Since the information that
we are collecting from the environment is minimal, we could 8]
propose simple network protocols. Also, we would like to 7]
make our beams invisible. To this end, we are planning to
use inexpensive infrared-pass filters along with frequency
modulation to decrease the chance of interference fror'fg]
ambient light.

We can also incorporate knowledge of motion of human
in buildings into our algorithms to increase the accuracy o
our tracking approach by building appropiate probabdisti[10]
models. We are currently using data from people moving
inside buildings [3] and ideas presented in the Iiteraturﬁl]
concerning motion of humans [9], [12]. For example, one
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