
Minimalist Multiple Target Tracking
Using Directional Sensor Beams

Leonardo Bobadilla, Oscar Sanchez, Justin Czarnowski, Steven M. LaValle

Abstract— We consider the problem of determining the
paths of multiple, unpredictable moving bodies in a cluttered
environment using weak detection sensors that provide simple
crossing information. Each sensor is a beam that, when broken,
provides the direction of the crossing (one bit) and nothing
else. Using a simple network of beams, the individual paths
are separated and reconstructed as well as possible, up to
combinatorial information about the route taken. In this setup,
simple filtering algorithms are introduced, and a low-cost
hardware implementation that demonstrates the practicality of
the approach is shown. The results may apply in settings such
as verification of multirobot system execution, surveillance and
security, and unobtrusive behavioral monitoring for wildl ife and
the elderly.

I. I NTRODUCTION

Understanding the behaviors of agents (people, animals
or robots) in their environments is of foremost importance
in various sectors of society. One prominent example can
be seen in assisted living communities, where health care
personnel may desire vital information about a patient such
as location and activity in their living space [25]. Another
important example is the allocation of resources such as
heating, ventilation and cooling (HVAC) in residential, com-
mercial and industrial spaces, where an estimation of the
behavior of agents in buildings can lead to significant savings
in energy consumption [16]. Another major example is in
retail stores, where this information can be used analyze
customer flows, traffic trends, and determine optimal opening
hours [1], [2]. Other important problems include tracking
wildlife movement, sensor assisted child care, and surveil-
lance.

Multiple-agent tracking is a fundamental application of
sensor networks that is challenging due to both theoretical
and practical issues. On the theoretical side, a tracking
algorithm should be able to initiate and terminate tracks,
solve data association problems, and take into account errors
due to sensing [19]. Practical limitations include memory,
communication bandwidth, computational power, and battery
life of sensor nodes [15].

Most tracking methods attempt to estimate the exact
position of agents in a continuous state space [18], [19], [29].
In these methods, tracking is done using Bayesian filters,
such as the Kalman filter and particle filter. These techniques,
however, require dynamical modeling of the agents and
reasonably good measurements of the moving agents.

L. Bobadilla, O. Sanchez, J. Czarnowski and S.M. LaValle
are with the Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{bobadil1,sanche14,jczarno2,lavalle}@uiuc.edu

Algorithms using binary proximity sensors have been
proposed for tracking a single agent [5], [13], [20]. For the
multiple agent tracking case, extensions have been proposed
which use classification [17] or constrain the tracking to
the real line [21]. The binary proximity sensors are usually
modeled as circular disk regions that must cover the tracking
region of interest. The assumption of a disk region may not
be realistic in practice for commonly used sensor modalities
such as acoustic sensors and passive infrared sensors.

Recently, in [23] the problem in which one agent travels
among obstacles and binary detection beams was considered.
Algorithms were proposed to determine possible paths fol-
lowed by an agent based only on binary sensor data from
a set ofsensor beams. An extension was presented in [27],
which proposes and solves a verification problem in which
a claimed behavior of a single agent is validated against an
observation history from a network of detection and beam
sensors. In [28], errors in the agent story were considered.
We build on these results to track multiple agents.

Our ideas for tracking multiple agents differ in several
important aspects as compared with previous approaches.
First, we use a simple sensor, the directional beam, that
only provides the direction of crossing of the agent. This
sensor can be implemented in an inexpensive and reliable
fashion that preserves privacy. Second, our ideas do not
require precise metric information. This allows us to develop
algorithms that are simple to implement and computationally
efficient. Third, we do not assume a precise dynamical
modeling of agents (which can be hard to obtain in practice).
Instead, we provide a base algorithm that can be modified
to suit different tracking scenarios.

The paper is organized as follows. Section II presents the
problem formulation. Section III introduces a base algorithm
for tracking multiple agents assuming perfect sensing, and
includes a discussion of its limitations. Various modifications
and extensions to the base algorithm are provided in Section
IV. Section V removes the perfect sensing assumption, and
presents algorithms for detecting and correcting errors. Sec-
tion VI presents a hardware architecture that uses inexpensive
components implementing the algorithms proposed along
with illustrative experiments. Conclusions and directions of
further research are discussed in Section VII.

II. PROBLEM FORMULATION

LetW ⊂ R
2 be the closure of a contractible open set in the

plane that has a connected open interior withobstaclesthat
represent inaccessible regions. LetE ⊂W be thefree space,
which is the open subset ofW with the obstacles removed.

Fig. 1. Three agents moving in a building.

Let B be a set of pairwise disjointbeams, each of which is
an open linear subset ofE. These beams are line segments
with both endpoints on the boundary ofE. For example, in
Figure 1 the beams are labeledB = {a, b, c, d, e, f, g}.

The collection of obstacles (holes in the polygon and outer
boundary) and beams induces a decomposition ofE into
connected regions. The environment is decomposed into a set
R of regionsr1, r2, ...rp. These regions are places of interest
that can correspond, for instance, to rooms in buildings or
sections in a retail store. For example, the beams in Figure
2 divide E into six two-dimensional regions, in this case
R = {r1, r2, ..., r6}.

There will be a numbern (unknown but finite) of in-
distinguishableagentsmoving inside the environment. The
trajectory of a single agent is represented byx̃i : [0, tf]→ E,
in which [0, tf] represents a time interval andtf is the final
time. We assume that the set of possible paths for each agent
is restricted so that every beam crossing is transversal (the
agent cannot “touch” a beam without crossing).

LetD = {−1, 1} be the set of beam directions. The sensor
model depicted in Figure 1 can be obtained by a sensor
mappingh : E → Y in which Y = B ×D.

We defineŷ : [0, t] → Y to be theobservation history,
or observations collected during a period of time[0, t] from
all the sensors. Let̃y be theobservation string(or sensor
word) that is obtained from̂y by taking the crossing events
and preserving only the order, the labels and the directions
(no time information).

For example, in Figure 2 we haveB = {a, b, c, d, e, f, g}.
For eachβ ∈ B, β denotes the forward direction andβ−1

denotes the backward direction. In the example in Figure 1, if
left to right and bottom to top represent the forward direction,
the sensor word is̃y = g−1a−1d−1e−1bb−1c−1cef . Using
this information, we would like to give possible explanations
about the paths of the agents.

We define theregion graphG as follows. Every vertex in
G corresponds to a region inE. A directed edge is made
from r1 ∈ R to r2 ∈ R if and only if an agent can cross a
single beam to go fromr1 to r2. The corresponding beam
label β is placed on the edge. We also create an edge from

Fig. 2. Region graph.

r2 ∈ R to r1 ∈ R with the beam labelβ−1 for the opposite
direction. The corresponding region graph for Figure 1 is
presented in Figure 2.

Let ỹi be the sequence of crossings for theith agent. For
the example in Figure 1,̃y1 (the green agent) isg−1d−1c−1

ỹ2 (black agent) isa−1bef andỹ3 (yellow agent) ise−1b−1c.
Some interesting problems in this framework are:

Problem 1: Perfect-sensing tracking
Given the region graphG induced by beams and obstacles,
and the observation string̃y, present an algorithm to return
a set of possiblẽyi. Also, we would like to find out what
conditions make an exact reconstruction possible.

In the previous problem, we assume that no two agents
simultaneously cross a sensor beam (if they do, there will
be missing observations in the observation stringỹ). We
solve this problem by first detecting and correcting possible
errors inỹ, and then using the algorithms for Problem 1. We
formulate this problem as follows:

Problem 2: Error detection and correction
Given an observation string that may contain errorsỹerror,
find algorithms to detect and correct the errors to yield the
true observation string̃y.

III. B ASE ALGORITHM FOR MULTIPLE AGENT

TRACKING

In this section, we present algorithms to reconstruct possi-
ble paths of agents in an environment with directional beams
assuming no sensing errors. We first present an initial base
algorithm, give its space and time complexity, and show its
limitations.

We first provide the following definition:
Definition 1: Region Finite Automaton
Let MG = (Σ, S, sinit, δ, R) be a finite state automaton

based on the region graphG in which:

1) The input alphabetΣ = Y ∪ ǫ.
2) The set of statesS = R ∪ {sinit}.
3) sinit is the initial state.
4) δ is the state transition functionδ : S × Σ→ S.
5) R is the set of accept (final) states.

The state transition functionδ is defined as follows:rj =
δ(ri, β) if it is possible to go from regionri to regionrj
while crossing beamβ. The initial statesinit is connected
by ǫ-transitions to all the states in the region graph as follows:
r = δ(sinit, ǫ) for all r ∈ R.

Based on the definition above, we have the following
observation:

Observation The path of a single agent̃yi belongs to the
language ofMG, L(MG), in whichL(MG) ⊂ Σ∗ is the set
of strings that are accepted by the finite automatonMG.

The previous observation allows us to propose a base
algorithm to assign observations to agents. The basic idea of
the algorithm is to iterate through all of the characters in the
sensor word̃y, looking for stringsỹi that belong toL(MG).
An outline of the algorithm is presented in Algorithm 1.

Algorithm 1 AgentsAssignment (̃y,G)

Input: ỹ[1..m] {Observation string}
Output: A[1..m] {Assignment of agents}

1: numberOfAgents← 0
2: for j = 1 to |ỹ| do
3: source← GetSourceV ertex(ỹ[j], G)
4: target← GetTargetV ertex(ỹ[j], G)
5: agent← Qsource.GetF irst()
6: if agent 6= NIL then
7: A[j]← agent

8: Qtarget.Insert(agent)
9: else

10: numberOfAgents++
11: A[j]← numberOfAgents

12: Qtarget.Insert(numberOfAgents)
13: end if
14: end for

A prerequisite for the algorithm is to find the region
graphG. If we are given a geometric representation of the
workspace, rooms, and sensors as an edge list, a cell decom-
position procedure (see [14], Chapter 6) such as vertical cell
decomposition [7] can be applied to the free space. After
applying the cell decomposition, the cells that share borders
must be combined [27].

The algorithm receives as its input the region graphG and
the observation string̃y, and outputs a vector of assignments
A which assigns an agent to each observation inỹ. Based on
A and ỹ, we can construct̃yi. The algorithm will update a
queueQr for eachr ∈ R that will contain the agents present
in each region. All of the queues are initially empty.

In Line 1 of Algorithm 1,numberOfAgents represents
the agent currently being assigned, initialized to 0. We iterate
over the rest of the string. Since each element of the string
ỹ[j] represents a directed edge in the region graphG, we can
obtain itssource andtarget vertices. In Line 6, we check if
there is an agent in the respective region queue. If an agent
is available, we assign the observation to the agent (Line 7)
and move the agent to its target region (Line 8). If an agent
is not available, a new agent is created and inserted in the
destination region (Lines 10, 11, and 12).

ImplementingQr as a LIFO will give priority to agents
that are already moving; in a sense, agents with momentum
keep moving. On the other hand, a FIFO implementation
assigns the agent that has been waiting the longest.

Algorithm 1 takesO(|ỹ|+ |R|) time andO(|ỹ||R|) space,
in which |ỹ| is the length of the string and|R| is the number

Fig. 3. An example of ambiguity that can arise in the case of two agents

of regions.

A. Properties of the algorithm

In this subsection, we will discuss the properties of the
base algorithm. Suppose that we are interested in the mini-
mum number of agents that explain the observation stringỹ.
We can prove that if we implementQ as a FIFO (First In
First Out) or LIFO (Last In First Out) queue, we can explain
ỹ using the minimum number of agents. This effectively
gives a lower bound on the number of agents. This result
is analogous to the one found by [21] in the case of tracking
in the real line. Thus, we present the following proposition:

Proposition 3.1:The algorithm gives the hypothesis with
the minimum number of agents that is consistent withỹ.

PROOF: The proof follows from the fact that an agent
is added only when the crossing cannot be explained with
the set of agents already considered. Since the count of
agents in each region is precisely determined by the sequence
directional crossings, it is impossible to have a hypothesis
with fewer agents.

B. Fundamental limitations

Since the beam sensors cannot distinguish between differ-
ent agents, there is a limit up to which the paths in the
region graph can be reconstructed precisely. As a simple
observation, we have that if the agents never cross paths,
then Algorithm 1 perfectly reconstructs each agent pathỹi.

A result inherent in minimalist sensor networks is ambi-
guity, as presented in Figure 3. In Figure 3 a sensor word
ỹ = ce−1db−1 can be partitioned in two agents asỹ1 = cd

and ỹ2 = e−1b−1, or alternatively we can assigñy1 = cb−1

and ỹ2 = e−1d. This problem was described in the context
of proximity sensors in [21]. The next section will introduce
some suitable heuristics to eliminate ambiguity in practice.

IV. VARIATIONS ON THE BASE ALGORITHM

In this section, we present variations on the base algorithm
that will help reduce the ambiguity of path reconstruction.
These variations will favor certain hypotheses and will help
the algorithm find a suitable answer to the tracking problem
by incorporating prior knowledge about the environment. We
also present ideas that extend the range of applicability of
the base algorithm. The modifications are simple additions
to the base algorithm that do not significantly alter its time
and space complexity.

A. Restrictions on the number of agents in each region

Suppose that we know the physical limitations of the
regions in the environment (e.g., fire code restrictions). For
example, consider a living room that can be occupied by
no more than10 agents. We can easily incorporate this
knowledge by restricting the size of eachQr to |Qr| ≤ ur, in
which |Qr| is the size of the queue, andur is an upper bound
on the number of agents in each region. This modification
can be easily made by checking that the queue is not already
at maximum capacity before attempting to insert an agent
(Lines 8 and 12).

B. Restrictions on the length of the tracks

Another possible modification is that we can associate to
each agenta a counter variablec that will take into account
the number of regions that an agent has visited. We can use
this region counter to enforce an upper bound on the number
of regions that each agent visits. This can be implemented
by assigning a counter to each agent that is incremented
each time an agent visits a region (Lines 8 and 12). When
the algorithm assigns an agent (Line 5), it checks that the
counter has not exceeded the maximum track length.

Also, we may want to sort each queueQk (Line 5) by the
number of regions visited, giving priorities to agents with
shorter tracks.

C. Known initial condition

If we know the number of agentsn and their initial
regions, we can use this information to initialize the queues
appropriately. We can then proceed with the rest of the
algorithm.

D. Different types of agents

If, in addition to the number of agentsn and their initial
regions, we have information about the type of agents in
each region, we can assign different levels of distinguisha-
bility [26]. Let T denote a set ofm teams, withm ≤ n.
Let l : A → T be a mapping which assigns a team to
each agent. We might havem = 1, in which case all the
agents would belong to the same team, and we would return
to the previous subsection. At the other extreme, we might
have l as a bijection withm = n with all the agents
belonging to different teams. More useful examples can
be proposed, for example, assigning colors to the agents,
with T = {red, green, blue} or different types of agents
T = {human, animal, robot}.

This team information can be used in several ways. For
example, suppose that certain areas are restricted to humans
or some others allow at most a number of robots. We
can implement this modification in the base algorithm by
associating to each queueQr a m-tuple of upper bounds
U = [u1, u2, ..., um] for each type of agent in the regions.
We can enforce these constraints whenever we insert a new
agent into the queues (Lines 8 and 12 of Algorithm 1)

We can also use this information to give priorities when
assigning which agent is going to exit the region. For
instance, we can give priorities to robots given that they move

faster than humans. This modification can be implemented
in the policy of the queue (Line 5).

E. Using time and geometric information

If we have a time stampt associated with each observation
in ỹ, then we know the time in which an agent enters a
region. Suppose that for each region, we have the minimum
time necessary to traverse it (for example, by taking into
account a bounded speed for agents). We will be able to
discard in the assignment of available agents (Line 5) those
whose time spent in the region is less than the required time
to traverse it.

F. Additional applications

In this subsection, we explore applications beyond path
reconstruction using the framework presented in the previous
sections. Even though we might not be able to precisely
reconstruct the paths of all agents, there is a set of interesting
problems that can be solved in our framework. These ideas
have important applications in areas such as smart energy
allocation in buildings, retail store statistics, and surveillance:

1) Queries: Suppose that we have the observation string
ỹ. We are interested in answering questions such as the
following:

1) Which region was the most visited?
2) Which areas had the most traffic in a certain period of

the day?
3) What was the count of bodies in a given period of

time?
4) Were there more than 10 agents in any region at any

given time?

These ideas are closely related to queries in sensor network
databases (see [29], Chapter 6). The questions above can
be easily solved by standard string manipulation algorithms.
For example, to solve the first question, we can simply
count the number of characters iñy representing incoming
edges for each region. For instance, to count the number
of visitors to regionr4 (Figures 1 and 2), we just need to
count the number of occurrences of characters{d, f, g−1}.
Similar simple procedures can be used to solve the remaining
questions listed above or other questions of interest regarding
counts of agents in regions.

2) Path verification:Also, using the same problem formu-
lation, we can deal with problems that involve verification of
paths. Suppose that we want to know whether a given path in
the regions̃ystory was followed by an agent. This path may
represent, for example, a certain order of visiting aisles in a
grocery store, certain places in a museum, or a story given by
an agent that must be validated [28], [27]. This problem can
be framed as an instance of the well knownLocal Alignment
Problem (see [11], Chapter 11). The problem is defined as
follows: Given two strings̃ystory and ỹ, find two substrings
s1 in ỹstory ands2 in ỹ whose similarity is maximum over
all pairs of substrings. If the strings1 is preciselyỹstory,
then the query path is plausible. This problem can be solved
in O(|ỹstory||ỹ|) time [22].

V. I MPERFECTSENSING CASE

Detection errors are common in sensor networks; there
are numerous efforts described in the literature to attack
this problem. Most approaches assume a distribution on the
sensing errors or a motion model for the agents [6].

In our directional beam sensor model implementation, we
have observed that the only type of error that we get is
a false negative(an observation that is not reported). This
error arises in practice when two bodies cross the directional
beam at the same time. This error may also originate due to
an agent crossing that is not detected, or a packet that was
dropped in the network and did not reach the central node.

We see the correction of errors as a preceding step to the
procedure described in Section III. Therefore, we will have
a stringỹerror that may contain missing observations. From
this string, we want to recover the actual stringỹ.

For this section, will assume that we know the number of
agents in the system. This assumption may be justified by an
upper bound on the number of agents due to physical space
restrictions in buildings.

Since the agents are indistinguishable, we define the
following reduced information space [14].

Definition 2: Counting Information Space
Let ni ∈ N be the number of agents in regionri, andn be

the total number of bodies; hence
∑

i ni = n. Thecounting
information spaceis defined asIC = {(n1, . . . , np) ∈
N

p|
∑p

1
ni = n} in which p is the number of regions.

Therefore,|IC | =
(

p+n−1

n−1

)

; this is the number of ways to
put n balls (bodies) inp boxes (regions). Even though this
information space is large, we do not have to explicitly deal
with it.

Definition 3: Counting Finite Automaton
Using the information space, we can define the following

finite automaton

MC = (Σ, IC , η0, δC), (1)

in which Σ is the observation spaceY , IC is the counting
information space,η0 ∈ IC is an information state that
corresponds to the initial configuration of bodies in the
regions. Finally,δC : IC × Σ → IC is defined as follows:
δC(η, β) = η′ if and only if it is possible to go fromη to η′

by a single agent crossing of the beamβ.
Figure 4 shows an example of a counting finite automaton

that has three regionsR = {r1, r2, r3} and three directional
beamsB = {a, b, c} for two bodies.

Based on the previous definitions we have the following
observation:

Observation All observation strings̃y belong to the lan-
guage ofMC , L(MC) .

Based on the above result, we first propose a verification
algorithm that decides if a string is correct or not. Then,
we propose a procedure to reconstruct the true observation
string.

Using the base algorithm of Section III, it is clear that
there exists a polynomial-time algorithm that can determine

b

c

a

c

b aa b

c

c

a b

(a) (b)

Fig. 4. a) An example of an arrangement of three regions, and three gates
for two bodies; b) the corresponding Counting Finite Automaton.

whether an observation string is inL(MC). It is enough
to initialize the queues according to the information inη0.
If during the execution of the algorithm (using LIFO or
FIFO) no additional agents are required, then the string is in
L(MC). Notice that we do not need an explicit representation
of the automaton. As noted before, the algorithm requires
O(|R|) space (only the size of the queues are necessary),
andO(|ỹ|) time.

The condition that̃y 6∈ L(MC) is sufficient for detecting
an error; that is, if this condition is true then there is an a
error. However, if the observation string is valid with respect
to MC , it does not imply there is no error.

Observation The errors in stringỹe can be corrected by
finding its closest string inL(MC).

In order to correct the sensor word, we can find a string in
the language defined byMC that is close to the observation
string (̃ye). Since it is assumed that only false negative
errors occur, only insertions can be considered as valid
transformations of the observation string. This approximation
can be obtained as a special case of the edit distance, and
therefore can be computed using a dynamic programming
based procedure [4], [24].

VI. I MPLEMENTATION

In this section, we present the results of our physical
implementation of the ideas presented in previous sections.
We will first describe an inexpensive architecture that we
developed to implement the algorithms. We will then present
the results of experiments using our hardware implementa-
tion.

A. Hardware architecture

Agent crossing feedback is achieved through the use of
optical emitter-detector pairs. Laser pointers were chosen
because they are inexpensive (about $2 US each) and easily
aimed. The laser pointers were modified to run on external
battery packs (3 AA alkaline batteries in series). Simple
photodiodes (about $2 US each) were mounted on the
opposite side to detect the laser beams. When an agent
crosses a beam, a change in voltage is observed at the output
of the photodetector. We built a simple ADC circuit based
off of the LM339 comparator to detect this change.

We use a Complex Programmable Logic Device (CPLD)
to process the digital outputs from our ADC board. Although
it is possible to detect crossings with the use of a single
emitter-detector pair, false positive errors will be detected if
an agent begins to cross a beam, but changes direction and
returns to the original region.

Fig. 5. An agent in the process of crossing a bidirectional beam.

To solve this problem, we placed two emitter-detector
pairs next to each other (the separating distance must be
less than the width of the agent to be detected). We call
each set of 2 emitter-detector pairs a bidirectional beam. We
implemented a state machine on our CPLD to distinguish
true crossings from false positive crossings. An added benefit
of this method is that it allows us to detect the direction of
crossing. By visualizing an agent completing a crossing of
this bidirectional sensor, we can determine whether an agent
has truly completed a crossing, or whether it has simply
started to cross, only to return to the original region before
crossing. A completed crossing can be seen in Figure 6. The
resulting finite state machine implementation is shown in
Figure 7.

Fig. 6. Illustration of an agent crossing a directional beamfrom left to
right.

The total cost of our 4 bidirectional beam (8 physical
beam) system is under $50 US. Experimental testing showed
our system to be highly reliable. Once the emitter detector
pairs are mounted and properly aimed, we do not find any
errors for single agent crossings. Additionally, our system
is energy efficient: Using Altera’s PowerPlay Estimator, the
current draw after powerup of our 4 directional beam design
is calculated to be only 0.072 mA after powerup. Thus, the
CPLD itself could run for over 37,000 hours from the energy
contained in three alkaline batteries. As for the laser beams,
the current draw from a laser was measured to be 21.7
mA when running off of a set of 3 AA alkaline batteries.
Assuming a standard AA alkaline capacity of 2700 mAh, a

IDLE

LR1 LR2 LR3 LRCROSS

RL1 RL2 RL3 RLCROSS

10

11 01

10

00

11

01

11 10

01

00

11

01 11 10

10 11 01

Fig. 7. A state machine used to detect the completion and direction of a
beam crossing (all undisplayed transitions return to theIDLE state).

laser could run off of a group of AA batteries for over 120
hours.

B. Experimental results

We will illustrate the hardware implementation of our
tracking system with an experiment. For this example, we
will show the tracking algorithms described in Section III
applied to two agents. For the purpose of this experiment,
we created a 5.5’ by 4.25’ environment bounded by cinder
blocks. Small bricks on the inside of the environment repre-
sent obstacles.

r1

r4

r5

r2 r3

cb

b
−1

dd
−1

a
−1

c
−1

a

(a) (b)

Fig. 8. a) A physical implementation of an environment including 4
directional beams and 5 regions; b) the corresponding region graph of the
environment.

We used two randomly moving agents (see Figure 9)
and placed them inside the environment. We then observed
them with our tracking system for several minutes. A
ground truth trajectory of the agent paths was recorded
using an overhead camera and OpenCV. Figure 10 shows
the ground truth. For the reconstruction algorithm, we
used the base algorithm, implementing eachQ as a FIFO
(giving priority to the agents who have been in a region
the longest). For clarity, only the first several seconds of
tracking are shown. The observation string was recorded as
ỹ = b−1ac−1d−1a−1b−1dc−1d−1cbdb−1d−1c−1d−1dd−1 in
which clockwise crossings are represented as forward, and
counter-clockwise backward are represented as reverse. The
reconstruction based on this string is shown in Figure 11. The
paths found are given bỹy1 = b−1c−1d−1dd−1dd−1dd−1

and ỹ2 = aa−1b−1c−1cbb−1c−1d−1.

(a) (b)

(c) (d)

Fig. 9. Some snapshots of the experiment: a) The two agents begin in
the same region; b) after 3 seconds, one agent has moved to theupper-right
region; c) after 6 seconds, both agents have moved to the lower-right region;
d) after 9 seconds, one agent exits the region.

Fig. 10. A ground truth path of 2 agents moving in the environment.

VII. C ONCLUSIONS ANDFUTURE WORK

In this work, we have presented simple and efficient algo-
rithms for the reconstruction of paths followed by multiple
agents using inexpensive, weak detection sensors. We de-
signed and implemented a low-cost, low energy consumption
hardware architecture to demonstrate the practicality of our
proposed approach.

From the hardware architecture point of view, we are
currently working on a wireless deployment of our system.
We have considered using Xbee modules that are relatively
inexpensive, small, and easy to configure for small sensor
networks. They could be used to allow our tracking system
to be more flexible and mobile. Since the information that
we are collecting from the environment is minimal, we could
propose simple network protocols. Also, we would like to
make our beams invisible. To this end, we are planning to
use inexpensive infrared-pass filters along with frequency
modulation to decrease the chance of interference from
ambient light.

We can also incorporate knowledge of motion of humans
in buildings into our algorithms to increase the accuracy of
our tracking approach by building appropiate probabilistic
models. We are currently using data from people moving
inside buildings [3] and ideas presented in the literature
concerning motion of humans [9], [12]. For example, one

b c

a d

Fig. 11. A computer-reconstructed path based on our algorithm.

common pattern observed is that people tend to move in
small groups in retail stores. These probabilistic ideas can
be incorporated into our framework without major modifica-
tions.

One interesting problem in our framework is that of sensor
placement. Given an environmentE, we would like to find
a proper placement of beams to obtain a good tracking
performance, so as to reconstruct agents paths as accurately
as possible. Related work can be found in the sensor network
literature [8], [10].

VIII. A CKNOWLDEGEMENTS

This work is supported in part by NSF grant 0904501
(IIS Robotics), NSF grant 1035345 (CNS Cyberphysical
Systems), DARPA SToMP grant HR0011-05-1-0008, and
MURI/ONR grant N00014-09-1-1052.

REFERENCES

[1] http://www.cognimatics.com/.
[2] http://www.videomining.com/.
[3] http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
[4] C. Allauzen and M. Mohri. Linear-space computation of the edit-

distance between a string and a finite automaton. InLondon Algorith-
mics 2008: Theory and Practice, 2008.

[5] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and
D. Rus. Tracking a moving object with a binary sensor network.
In Proceedings of the 1st international conference on Embedded
networked sensor system (SenSys), 2003.

[6] Y. Bar-Shalom and T. R. Fortmann.Tracking and data association.
Academic Press Professional, Inc. San Diego, CA, USA, 1987.

[7] B. Chazelle. Approximation and decomposition of shapes. In J. T.
Schwartz and C. K. Yap, editors,Algorithmic and Geometric Aspects
of Robotics, pages 145–185. Lawrence Erlbaum Associates, Hillsdale,
NJ, 1987.

[8] S. Funke, A. Kesselman, F. Kuhn, Z. Lotker, and M. Segal. Improved
approximation algorithms for connected sensor cover.Wireless Net-
works, 13:153–164, 2007.

[9] M. C. Gonzalez, C. A. Hidalgo, and A-L. Barabasi. Understanding
individual human mobility patterns.Nature, 453:779–782, June 2008.

[10] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor place-
ments in gaussian processes. InProceedings International Conference
on Machine Learning, 2005.

[11] D. Gusfield. Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge Univ Pr, 1997.

[12] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features
of escape panic.Nature, 407:487–490, 2000.

[13] W. Kim, K. Mechitov, J. Choi, and S. Ham. On target tracking with
binary proximity sensors. InACM/IEEE International Conference on
Information Processing in Sensor Networks, 2005.

[14] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[15] D. Li, K. Wong, Y. H Hu, and A. Sayeed. Detection, classification
and tracking of targets in distributed sensor networks.IEEE Signal
Processing Magazine, 19(2):17–29, 2002.

[16] J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic,
E. Field, and K. Whitehouse. The smart thermostat: using occupancy
sensors to save energy in homes. InProceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, 2010.

[17] S. Oh and S. Sastry. Tracking on a graph. InACM/IEEE International
Conference on Information Processing in Sensor Networks, 2005.

[18] S. Oh, L. Schenato, P. Chen, and S. Sastry. Tracking and coordination
of multiple agents using sensor networks: system design, algorithms
and experiments.Proceedings of the IEEE, 95(1):234–254, 2007.

[19] D. Reid. An algorithm for tracking multiple targets.IEEE Transactions
on Automatic Control, 24(6):843–854, 1979.

[20] N. Shrivastava, R. M.U Madhow, and S. Suri. Target tracking with bi-
nary proximity sensors: fundamental limits, minimal descriptions, and
algorithms. InACM/IEEE International Conference on Information
Processing in Sensor Networks, 2006.

[21] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking
multiple targets using binary proximity sensors. InACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks,
2007.

[22] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences.J. Mol. Biol, 147:195–197, 1981.

[23] B. Tovar, F. Cohen, and S. M. LaValle. Sensor beams, obstacles, and
possible paths. InProceedings Workshop on Algorithmic Foundations
of Robotics (WAFR), 2008.

[24] R. A Wagner. Order-n correction for regular languages.Communica-
tions of the ACM, 17(5):265–268, 1974.

[25] Q. Wang, W. Shin, X. Liu, Z. Zeng, C. Oh, B. K AlShebli, M. Cac-
camo, C. A Gunter, E. Gunter, K. Karahalios, and L. Sha. I-Living:
an open system architecture for assisted living. InProceedings IEEE
International Conference on Systems, Man, & Cybernetics, 2006.

[26] J. Yu and S. M. LaValle. Tracking hidden agents through shadow
information spaces. InProceedings IEEE International Conference
on Robotics and Automation, 2008.

[27] J. Yu and S. M LaValle. Cyber detectives: Determining when robots
or people misbehave. InProceedings Workshop on Algorithmic
Foundations of Robotics(WAFR), 2010.

[28] J. Yu and S. M LaValle. Story validation and approximatepath infer-
ence with a sparse network of heterogeneous sensors. InProceedings
IEEE International Conference on Robotics and Automation, 2011.

[29] F. Zhao and L. Guibas.Sensor Networks: An Information Processing
Approach. Morgan Kaufmann, San Francisco, CA, 2004.

