Time-optimal Paths for a Dubins airplane

Hamidreza Chitsaz and Steven M. LaValle

Abstract— We consider finding a time-optimal trajectory for Our model is a natural extention of the Dubins car [15],
an airplane from some starting point and orientation to some and extends it with an additional configuration variable for
final point and orientation. Our model extends the Dubins he aitude. We consider a simplified kinematic model of
car [15] to have altitude, which leads to Dubins airplane. h irol It al flies f d d th h
We assume that the system has independent bounded control,t e airplane. |t always flies forward an ) the system as
over the altitude velocity as well as the turning rate in the independent bounded control over the altitude velocity and
plane. Through the use of the Pontryagin Maximum Principle, the turning rate in the plane. We call such systemDhbins
we characterize the time-optimal trajectories for the sysem.  ajrplane
They are composed of turns with minimum radius, straight The first work on time-optimal paths for a simple air-
line segments, and pieces of planar elastica. One motivatio | del d bv LE. Dubi 151. Dubi
for determining these elementary pieces is for use as motion planeé mo. e _Was o_ne y e u _|ns [ - ]. Dubins gavg a
primitives in modern planning and control algorithms that ~ Characterization of time-optimal trajectories for a cathwi
consider obstacles. a bounded turning radius. The car always moves forward

with constant speed. He used a purely geometrical method
. INTRODUCTION to characterize such shortest paths. Later, Reeds and Shepp

o imlify the aircraf | and planni bsolved a similar problem in which the car is able to move
| ne Cal? S,'mﬁ ify the alrcre}t gontrtln arl; planning prohbackward as well [28]. Shortly after Reeds and Shepp, their
'em, usually |r.1t € presence of obstacles, by piecing taget problem was solved and also refined by Sussmann and Tang
in an appropriate way, a set of elementary trajectoriesainos 33] and by Boissonnat, Cérézo, and Leblond [7] with the

Lr_omda I|brary..S|l|Jch p|ec§s of trajectonesl_that ((;an ?’e co. 1elp of optimal control techniques. Souéres and Laumond
Ined sequentially to produce more complicated trajeesor ., qjfieq the shortest paths for a Reeds-Shepp car into

are called motion primitives [5], [18], [19]. They may EVeN sy mmetric classes and gave the control synthesis [32].-Balk

be computed and stored offline, in particular when there atbm and Mason characterized the time-optimal paths for the

symmetries, to yield speedup in online motion planning ajifferential drive [4], and Chitsaz et al gave a charactdion

pli_ca_ti.ons such as computer games. Finding su_itable MOURR minimum wheel-rotation paths for the differential drive
primitives for a -robot. is an area. of rece.nt, agtlve resear.cﬁl], [12]. In all of those works, the environment is assumed
Or_le_gpproach is using the optimal trajectories as mot|0[|8 be unobstructed. The problem becomes more difficult
primitives [3]_' ) . when there are obstacles in the environment. The shortest
Many motion planning approaches have relied on googy g for the Dubins and Reeds-Shepp car and the differentia
motion primitives, including optimal kinematic trajectes. drive among obstacles have also been studied [1], [2], [6],
Latombe successfully used Reeds-Shepp curves in a fast p 11 [10], [17], [20], [24], [26], [29], [35], [36], [39].
planner for an indoor mobile robot among obstacles [23]. Walsh, Montgomery, and Sastry used Pontryagin Maxi-
Conner et al used a set of continuous local feedback contrlrﬁlum Principle to plan optimal paths on matrix Lie groups
poligies and a disc_rete autgmaton to .plan vgrifiably corre%S]. Specifically, they plan optimal paths for an airplane i
motions for a mobile robot in a changing environment [14]SE(2), SO(3), andSE(3). Their cost function is quadratic

Mehta and Egerstedt used optimal control for constructing yhe input. In this paper, we consider a different problem
control programs from a given collection of motion Primi-i, \which we minimize time for a system IS E(2) x R.

tives, and also for augmenting the motion primitive set [25]For algorithms for steering on matrix Lie groups see [30],

Frazzoli et al proposed a set of motion primitives, for 321 anq for optimal path planning for UAVs with tactical
six-dimensional aircraft, which contains pieces of Opt'maconstraints see [40], [41].

trajectories called trim trajectories [18]. Particularithe
optimal trajectories for an aircraft may yield a useful skt o

motion primitives. We study the time-optimal trajectorfes  31) [33], [38]. The existence of optimal paths in this case
a s_,|mpl|f_|ed airplane model_m this paper. The time-optimagy |65 from Filippov’s theorem [9]. We use the Pontryagin
trajectories play also a cruc@ role in ?"r traffic managBt_ne Maximum Principle as a necessary condition to rule out non-
systems [22], [34], [42], e.g. in detecting the safety regio ,iima| paths. We distinguish three cases: low, medium, and
_ , high goal altitudes of the airplane. Intuitively, if the doa
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The approach that we use to derive optimal trajectories is
similar in spirit to the ones used before [4], [7], [12], [13]



. control, i.e. a measurable function : [0,7] — U, that
minimizes J while transferring the initial configuration to
N the goal configuration. Without loss of generality we may
assume, throughout this paper, that the initial configomati
T of the system i5(0,0,0,0) € C. We also denote the goal

configuration by(z, vy, 24, 0,). Throughout the paper sgn
y is the sign function.
(z,y)

& The existence of optimal paths in this case follows from
Filippov’s theorem [9]. Thus, it is viable to use the Pontrya
Fig. 1. The Dubins airplane model gin Maximum Principle (PMP) for this problem.

z

IIl. PONTRYAGIN MAXIMUM PRINCIPLE

the goal altitude is high, the altitude velocity gets saraa L€t the HamiltonianiT : R* x C x U — R be

an_d the system has to_ maneuver until it reaches _the goal HO\q,u) = () 3)

altitude. For medium altitudes in between low and high, the

time-optimal path is either a locally longest curve for thén which ¢ is given in (1). According to the PMP [27], for

Dubins car or a path composed of turns and pieces of plangyery optimal trajectory(t) defined on0, 7'] and associated

elastica [21] with saturated altitude velocity. with control u(t), there exists a constary, > 0 and an
Locally longest curves for the Dubins car, which cannogbsolutely continuous vector-valued adjoint functi) =

be infinitesimally elongated, play an important role in the1(Z), A2(t), A3(t), A4(t)), that is nonzero if\o = 0, with

airplane time-optimal trajectories for medium altituden A the following properties along the optimal trajectory:

example of such locally longest curves is a short arc of a ) OH
circle. Dubins proved that a short arc of a circle is isolated A= " aq’ (4)
in the space of all bounded curvature plane paths [16]. Asa  f7(\(¢),q(t),u(t) = maxH(\t),q(t),2), (5)
by-product, we characterize locally longest Dubins curves z€U

H(A(t),q(t),u(t)) = Ao (6)

Il. PROBLEM FORMULATION

. . . . _ _Def 1. An extremalis a trajectoryq(t) that satisfies the
The Dubins airplane is a four-dimensional system Wltl’&onditions of the PMP.

its configuration variable denoted by = (z,y,2,0) €
C = R?® x S' in which z, y, and z are the coordinates
of the airplane in the three-dimensional Euclidean spac
andd € [0,27) is the angle between-axis of the frame

In this section, let(¢) be an extremal associated with the
adjoint \(¢) and the controli(¢). Equation (4) can be solved
for A to obtain

and the airplane local longitudinal axis in— y plane (see @

Figure 1). Equivalently, the Dubins airplane is the Dubins A(t) = €2 ’ 7)
car, (z,y,0) € R? x S!, with an additional configuration €3

variable for altitudez. This model is a simplified model of €1y — C2% + ¢4

a real airplane. in which ¢, ¢2, 3, andey are constants. Along an extremal,

The system has independent bounded contral ahd 3. (5) yields the extremal control law
In other words, the system is )
u, =sgn(cs) if c3 #0 (8)

G = flg,u) = fola) + u=f1(q) + ug f2(q) 1) w, € [~1,1]if e3=0 9)

in which fq, f1, andf, are vector fields in the tangent bundle ug = sgncry — cox + ¢4) if c1y — cox + ¢4 £ 0 (10)
TC of the configuration space. We assume the minimum ugp € [=1,1] if e1y — cox + ¢4 = 0. (11)
turning radius and the maximum altitude velocity of the

airplane are 1. In this casgy, f1, and f, are If c3 = 0, then (8) implies that., can have any value
within [—1,1]. In this case, the following two propositions

Cfﬁz 8 8 show that the projection of(t) onto the(x,y, 6)-space is
fo = Slg = [ande = (2) an extremal for the Dubins car.
0 0 1 Proposition 1. If ¢ = 0 and Ay # 0, then the projection of

q(t) onto the(z,y, 6)-space is an extremal for the Dubins

We assume thatu, |, [ue| < 1. Thus, the control region is car, i.e a trajectory of the Dubins car that satisfies the PMP.

U = [-1,1]? and (u,us) € U. The cost functional/ to
be minimized is time, i.eJ(u) = fOT dt. For every pair Proof. Sincecs = 0 and H = X\g # 0, the vector
of initial and goal configurations, we seek an admissiblé\;, A2, \4) is nonzero. Hence, the projection gft) onto



(z,y,6)-space satisfies the PMP. Thus, it has to be aor some constantX. Regular and abnormal extremals,
extremal for the Dubins cam corresponding tey # 0 and~y, = 0 respectively, are studied

Proposition 2. If both ¢ = 0 and A\ = 0, theng(t) has in the following two sections.

zero duration.

. " . A. Regular Extremals
Proof. In this case, conditions (6) and (5) imply that ou X

A1 cosf + Aasin@ + |Ay| = 0. Thus, the projection ofi(t) We may now scaleéF’ and assumey, = —2. Rewriting
onto the (z,y,0)-space is an abnormal extremal for thethe Hamiltonian we geF = 1 cos 6 + o sin 6 + y3u — “2—2
Dubins car. Abnormal extremals for the Dubins car havelaximization of F' in (19) implies that

zero durationm

If c3 # 0, then the duration of(¢) is |z4| in which z, is 1 if |
the final altitude, be(_:auszez = 1 or —1, depending on the u=1{ if —1<~y3<1. (21)
sign of ¢z, by (8). It is possible to have; = ¢ = ¢4 =0 1 if vy > 1

because:; # 0. In that caseuy can have any value within

[=1,1], by (8). This means that the projection gfft) onto Equations (16), (17), and (18) can be solved+do obtain
the (z,y, 0)-space can be any feasible path for the Dubins

car. However, the length of such path must|bg{. When el
does there exist a path of given length for the Dubins car? y(t) = s , (22)
We will study this question in the following section. €1y — eal + €3

IV. PATHS WITH GIVEN LENGTH FOR THEDUBINS CAR . . ,
in which ey, e, andes are constant. Alk;’s cannot be zero,

We desire to plan a path for the Dubins car with prescribegtherwise the extremal is a straight line. lete,y — eoz +
length. Lemma 5.3 in [16] proves that a short arc of circle (0f , — 0, ¢, : e;y—esz+es = 1, andl_ : eyy—esztes = —1
radius 1) is isolated in the space of all admissible paths fgje three lines in the plane. The control law (21) says that
the Dubins car. Intuitively, there are no feasible trajée® ,, — ~. if the car is moving betweefi. and/. . Otherwise,
for the Dubins car between the end points of the arc with) — 1 or —1 depending on the position of the car with respect
a length slightly more than the length of the arc. Whenevap the lines. Figures 2 and 3 show a few examples of curves
there exists a desired path, we pick the one which minimizggat satisfy such control law. These paths are composed of

a quadratic cost. turn with minimum radius, straight line segment, and etasti
Equations of motion for the Dubins car are [21], [38].
i = cos @, (12)
7§ = sin#), (13) B. Abnormal Extremals
6 =u. (14) Abnormal extremals correspond tg = 0. If K = 0

Following [38], we pick the path that minimizeg u2d¢ 1N (20). then the extremal is of zero duration. Af > 0,
with given length for this system. If there exists such path, then the extremal is a time-extremal for the Dubins car.

should satisfy the PMP. Let the Hamiltonidh: R? x (R? x If K < 0, then the extremal is also an extremal of the
S') x [~1,1] — R be functional I (u) = fOT —dt. We call such extremal bocally

. 5 longest curvebecause it can be a local minimum bfu),
F(y, (z,y,0),u) = (7, (cosb,sinf,u)) +v0u”  (15)  or equivalently a local maximum of the length functional.

in which ~, is a constant. For every desired patft) = Further analysis of (19) leads to the following control law:
(x(t),y(¢),0(t)) defined on[0,T] and associated with con-
trol u(t), there exists a constanf, < 0 and an abso- u = sgn(ys) if 3 # 0, (23)
lutely continuous vector-valued adjoint functiop(t) = u € [-1,1] if v3=0. (24)
(71(t),72(t),v3(t)), that is nonzero ify, = 0, with the
following properties along(t): Depending on the sign ok, there are two different sets
) OF of extremals: time-extremals and locally longest curves.
= oz’ (16) 1) K > 0, time-extremals:In this case,F’ = e cosf +
Ao = _OF (17) c2sinf + lety — esx 4+ e3| = K > 0. Moreover, alle;’s
dy’ cannot be zero. Thus, the extremal satisfies the PMP with
4y — _OF (18) the length cost functionafOT dt. Thus, it is composed of
a0’ turn with minimum radius and straight line segment. The

F(y(t),p(t),u(t)) = max.e(—1,1) F(y(t),p(t), 2), (19)  extremal can tangentially joifi or diverge from¢. Figure 4
F(y(t),p(t),u(t)) = K, (20) depicts two examples of time-extremals.
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Fig. 2.  Some examples of curves with prescribed length ferDibins \
car; see also Figure 3
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2) K < 0, locally longest curves:The following con- m m
U

straint holds:

F =ejcos0+exsind + ey — esx + e3] = K < 0. (25)

In this case, the extremal cannot tangentially jbunless Fig. 4. Two time-extremals
it violates the constraint. Hence, either= 0 or u(t) =
sgne1y(t) — eax(t) 4+ e3) and ey cos + easinfd + |ery — N\ N\
eax+e3| < 0. More precisely, either the extremal completely ~— —"

lies on/, or it is composed of consecutive arcs of circle of ¢

length less tham. In Figure 5, the ling and an example of a

. ) ] Fig. 5. Locally longest curves for the Dubins car
locally longest curve is shown. Figure 6 shows an elongation



r(t) It then traverses a helix, i.e. a full circle in the plane with

/'V\ saturated altitude velocity.

p(t) C. Time-optimal Trajectories for Medium Goal Altitude

Fig. 6. Elongation of a Dubins shortest patft) to a locally longest curve If _there_ IS a path for the_ DmeS <_:ar_ from the initial
p(t) configuration to the goal configuration in tinig,|, then the
time-optimal trajectory for the system correspondse 0
in Section IIl. In this case, the altitude velocity is satech
from r(¢), a Dubins shortest path, to a locally longest curve! th_ere IS no path for the D_ubms_ car frqm the initial
configuration to the goal configuration in time,|, then

V. TIME-OPTIMAL TRAJECTORIES FOR THEAIRPLANE the time-optimal trajectory for the system must correspond

Going back to our original quest, which was to find tirne_to c3 = 0. The altitude velocity is not saturated in this

optimal paths for our airplane, recall that the final altéud case. Thus, the projection of the time-optimal trajectarjoo

plays a major role. We distinguish three cases: low, mediurf[1® (#-9. 0)-space is a Dubins time-extremal. Dubins time-
tremals are composed of turn with minimum radius and

and high goal altitude. In order to precisely define each ca§%( aht I s, Wi ted both i Secti
we give the following definition. ;svralg ine segments. We presented both cases in Section
Def 2. Let A be theDubins distanceof (z4,y,,6,) from
(0,0,0). More precisely, letA denote the duration, or

equivalently the length, of the shortest Dubins curve from We introduced the Dubins airplane which extends the
(0,0,0) to (z4,y4,0,). We call the final altitudelow if Dubins car with altitude. We gave a characterization of

1z,] < A, mediumif A < |z,] < A + 27, and high if the time-optimal trajectories for the Dubins airplane. For

VI. CONCLUSIONS

2] > A + 2r. low and high final altitudes, the time-optimal trajectories
B respectively consist of the Dubins curve with unsaturated
A. Time-optimal Trajectories for Low Goal Altitude altitude velocity, and the Dubins curve followed by a helix

As we mentioned before, following the shortest Dubin&vith saturated altitude velocity. For medium altitudes in
curve with an unsaturated altitude velocity is a time-optim P€tween low and high, different cases were recognized. The

strategy for low goal altitudes. This case corresponds Mne-optimg\l trajectory is eithgr a DUbi”? extremal (.n(ne th
c; = 0 in the PMP analysis in Section IIl. Note that theshortest) with unsaturated altitude velocity or a Dubinghpa

duration of such trajectory iA. It is obvious that there exists Of certain length with saturated altitude velocity. We gave
no trajectory transferring the system faster from the ahiti @ Method to find a Dubins path with prescribed length if it
configuration to the goal configuration. exists. We also gave an analysis of locally longest curves fo
the Dubins car, i.e. those paths that may not be infinitegymal
Lemma 1. For a low goal altitude, a time-optimal trajectory e|ongated. Numerical techniques can be used to compute

for the system (1) consists of the shortest Dubins curve Withe control synthesis. Analytical solution for the control
altitude velocityu, = A synthesis remains open for this problem.
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