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Abstract— We consider finding a time-optimal trajectory for
an airplane from some starting point and orientation to some
final point and orientation. Our model extends the Dubins
car [15] to have altitude, which leads to Dubins airplane.
We assume that the system has independent bounded control
over the altitude velocity as well as the turning rate in the
plane. Through the use of the Pontryagin Maximum Principle,
we characterize the time-optimal trajectories for the system.
They are composed of turns with minimum radius, straight
line segments, and pieces of planar elastica. One motivation
for determining these elementary pieces is for use as motion
primitives in modern planning and control algorithms that
consider obstacles.

I. I NTRODUCTION

One can simplify the aircraft control and planning prob-
lem, usually in the presence of obstacles, by piecing together,
in an appropriate way, a set of elementary trajectories chosen
from a library. Such pieces of trajectories that can be com-
bined sequentially to produce more complicated trajectories
are called motion primitives [5], [18], [19]. They may even
be computed and stored offline, in particular when there are
symmetries, to yield speedup in online motion planning ap-
plications such as computer games. Finding suitable motion
primitives for a robot is an area of recent, active research.
One approach is using the optimal trajectories as motion
primitives [3].

Many motion planning approaches have relied on good
motion primitives, including optimal kinematic trajectories.
Latombe successfully used Reeds-Shepp curves in a fast path
planner for an indoor mobile robot among obstacles [23].
Conner et al used a set of continuous local feedback control
policies and a discrete automaton to plan verifiably correct
motions for a mobile robot in a changing environment [14].
Mehta and Egerstedt used optimal control for constructing
control programs from a given collection of motion primi-
tives, and also for augmenting the motion primitive set [25].
Frazzoli et al proposed a set of motion primitives, for a
six-dimensional aircraft, which contains pieces of optimal
trajectories called trim trajectories [18]. Particularly, the
optimal trajectories for an aircraft may yield a useful set of
motion primitives. We study the time-optimal trajectoriesfor
a simplified airplane model in this paper. The time-optimal
trajectories play also a crucial role in air traffic management
systems [22], [34], [42], e.g. in detecting the safety regions.
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Our model is a natural extention of the Dubins car [15],
and extends it with an additional configuration variable for
the altitude. We consider a simplified kinematic model of
the airplane. It always flies forward and the system has
independent bounded control over the altitude velocity and
the turning rate in the plane. We call such system theDubins
airplane.

The first work on time-optimal paths for a simple air-
plane model was done by L.E. Dubins [15]. Dubins gave a
characterization of time-optimal trajectories for a car with
a bounded turning radius. The car always moves forward
with constant speed. He used a purely geometrical method
to characterize such shortest paths. Later, Reeds and Shepp
solved a similar problem in which the car is able to move
backward as well [28]. Shortly after Reeds and Shepp, their
problem was solved and also refined by Sussmann and Tang
[33] and by Boissonnat, Cérézo, and Leblond [7] with the
help of optimal control techniques. Souères and Laumond
classified the shortest paths for a Reeds-Shepp car into
symmetric classes and gave the control synthesis [32]. Balk-
com and Mason characterized the time-optimal paths for the
differential drive [4], and Chitsaz et al gave a characterization
of minimum wheel-rotation paths for the differential drive
[11], [12]. In all of those works, the environment is assumed
to be unobstructed. The problem becomes more difficult
when there are obstacles in the environment. The shortest
paths for the Dubins and Reeds-Shepp car and the differential
drive among obstacles have also been studied [1], [2], [6],
[8], [10], [17], [20], [24], [26], [29], [35], [36], [39].

Walsh, Montgomery, and Sastry used Pontryagin Maxi-
mum Principle to plan optimal paths on matrix Lie groups
[38]. Specifically, they plan optimal paths for an airplane in
SE(2), SO(3), andSE(3). Their cost function is quadratic
in the input. In this paper, we consider a different problem
in which we minimize time for a system inSE(2) × R.
For algorithms for steering on matrix Lie groups see [30],
[37], and for optimal path planning for UAVs with tactical
constraints see [40], [41].

The approach that we use to derive optimal trajectories is
similar in spirit to the ones used before [4], [7], [12], [13],
[31], [33], [38]. The existence of optimal paths in this case
follows from Filippov’s theorem [9]. We use the Pontryagin
Maximum Principle as a necessary condition to rule out non-
optimal paths. We distinguish three cases: low, medium, and
high goal altitudes of the airplane. Intuitively, if the goal
altitude is low, the airplane has to follow the shortest path
for the Dubins car with an unsaturated altitude velocity. If
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Fig. 1. The Dubins airplane model

the goal altitude is high, the altitude velocity gets saturated
and the system has to maneuver until it reaches the goal
altitude. For medium altitudes in between low and high, the
time-optimal path is either a locally longest curve for the
Dubins car or a path composed of turns and pieces of planar
elastica [21] with saturated altitude velocity.

Locally longest curves for the Dubins car, which cannot
be infinitesimally elongated, play an important role in the
airplane time-optimal trajectories for medium altitude. An
example of such locally longest curves is a short arc of a
circle. Dubins proved that a short arc of a circle is isolated
in the space of all bounded curvature plane paths [16]. As a
by-product, we characterize locally longest Dubins curves.

II. PROBLEM FORMULATION

The Dubins airplane is a four-dimensional system with
its configuration variable denoted byq = (x, y, z, θ) ∈

C = R
3 × S

1 in which x, y, and z are the coordinates
of the airplane in the three-dimensional Euclidean space,
and θ ∈ [0, 2π) is the angle betweenx-axis of the frame
and the airplane local longitudinal axis inx − y plane (see
Figure 1). Equivalently, the Dubins airplane is the Dubins
car, (x, y, θ) ∈ R

2 × S
1, with an additional configuration

variable for altitude,z. This model is a simplified model of
a real airplane.

The system has independent bounded control ofθ̇ and ż.
In other words, the system is

q̇ = f(q, u) = f0(q) + uzf1(q) + uθf2(q) (1)

in whichf0, f1, andf2 are vector fields in the tangent bundle
TC of the configuration space. We assume the minimum
turning radius and the maximum altitude velocity of the
airplane are 1. In this case,f0, f1, andf2 are

f0 =


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cos θ
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0

0
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. (2)

We assume that|uz|, |uθ| ≤ 1. Thus, the control region is
U = [−1, 1]2 and (uz, uθ) ∈ U . The cost functionalJ to
be minimized is time, i.e.J(u) =

∫ T

0
dt. For every pair

of initial and goal configurations, we seek an admissible

control, i.e. a measurable functionu : [0, T ] → U , that
minimizes J while transferring the initial configuration to
the goal configuration. Without loss of generality we may
assume, throughout this paper, that the initial configuration
of the system is(0, 0, 0, 0) ∈ C. We also denote the goal
configuration by(xg, yg, zg, θg). Throughout the paper sgn
is the sign function.

The existence of optimal paths in this case follows from
Filippov’s theorem [9]. Thus, it is viable to use the Pontrya-
gin Maximum Principle (PMP) for this problem.

III. PONTRYAGIN MAXIMUM PRINCIPLE

Let the HamiltonianH : R
4 × C × U → R be

H(λ, q, u) = 〈λ, q̇〉 (3)

in which q̇ is given in (1). According to the PMP [27], for
every optimal trajectoryq(t) defined on[0, T ] and associated
with control u(t), there exists a constantλ0 ≥ 0 and an
absolutely continuous vector-valued adjoint functionλ(t) =

(λ1(t), λ2(t), λ3(t), λ4(t)), that is nonzero ifλ0 = 0, with
the following properties along the optimal trajectory:

λ̇ = −
∂H

∂q
, (4)

H(λ(t), q(t), u(t)) = max
z∈U

H(λ(t), q(t), z), (5)

H(λ(t), q(t), u(t)) ≡ λ0. (6)

Def 1. An extremal is a trajectoryq(t) that satisfies the
conditions of the PMP.

In this section, letq(t) be an extremal associated with the
adjointλ(t) and the controlu(t). Equation (4) can be solved
for λ to obtain

λ(t) =









c1

c2

c3

c1y − c2x + c4









, (7)

in which c1, c2, c3, andc4 are constants. Along an extremal,
(5) yields the extremal control law

uz = sgn(c3) if c3 6= 0 (8)

uz ∈ [−1, 1] if c3 = 0 (9)

uθ = sgn(c1y − c2x + c4) if c1y − c2x + c4 6= 0 (10)

uθ ∈ [−1, 1] if c1y − c2x + c4 = 0. (11)

If c3 = 0, then (8) implies thatuz can have any value
within [−1, 1]. In this case, the following two propositions
show that the projection ofq(t) onto the(x, y, θ)-space is
an extremal for the Dubins car.

Proposition 1. If c3 = 0 andλ0 6= 0, then the projection of
q(t) onto the(x, y, θ)-space is an extremal for the Dubins
car, i.e a trajectory of the Dubins car that satisfies the PMP.

Proof. Since c3 = 0 and H = λ0 6= 0, the vector
(λ1, λ2, λ4) is nonzero. Hence, the projection ofq(t) onto



(x, y, θ)-space satisfies the PMP. Thus, it has to be an
extremal for the Dubins car.

Proposition 2. If both c3 = 0 and λ0 = 0, then q(t) has
zero duration.

Proof. In this case, conditions (6) and (5) imply that
λ1 cos θ + λ2 sin θ + |λ4| ≡ 0. Thus, the projection ofq(t)
onto the (x, y, θ)-space is an abnormal extremal for the
Dubins car. Abnormal extremals for the Dubins car have
zero duration.

If c3 6= 0, then the duration ofq(t) is |zg| in which zg is
the final altitude, becauseuz ≡ 1 or −1, depending on the
sign of c3, by (8). It is possible to havec1 = c2 = c4 = 0

becausec3 6= 0. In that case,uθ can have any value within
[−1, 1], by (8). This means that the projection ofq(t) onto
the (x, y, θ)-space can be any feasible path for the Dubins
car. However, the length of such path must be|zg|. When
does there exist a path of given length for the Dubins car?
We will study this question in the following section.

IV. PATHS WITH GIVEN LENGTH FOR THEDUBINS CAR

We desire to plan a path for the Dubins car with prescribed
length. Lemma 5.3 in [16] proves that a short arc of circle (of
radius 1) is isolated in the space of all admissible paths for
the Dubins car. Intuitively, there are no feasible trajectories
for the Dubins car between the end points of the arc with
a length slightly more than the length of the arc. Whenever
there exists a desired path, we pick the one which minimizes
a quadratic cost.

Equations of motion for the Dubins car are

ẋ = cos θ, (12)

ẏ = sin θ, (13)

θ̇ = u. (14)

Following [38], we pick the path that minimizes
∫ T

0 u2dt

with given length for this system. If there exists such path,it
should satisfy the PMP. Let the HamiltonianF : R

3× (R2×

S
1) × [−1, 1] → R be

F (γ, (x, y, θ), u) = 〈γ, (cos θ, sin θ, u)〉 + γ0u
2 (15)

in which γ0 is a constant. For every desired pathp(t) =

(x(t), y(t), θ(t)) defined on[0, T ] and associated with con-
trol u(t), there exists a constantγ0 ≤ 0 and an abso-
lutely continuous vector-valued adjoint functionγ(t) =

(γ1(t), γ2(t), γ3(t)), that is nonzero ifγ0 = 0, with the
following properties alongp(t):

γ̇1 = −
∂F

∂x
, (16)

γ̇2 = −
∂F

∂y
, (17)

γ̇3 = −
∂F

∂θ
, (18)

F (γ(t), p(t), u(t)) = maxz∈[−1,1] F (γ(t), p(t), z), (19)

F (γ(t), p(t), u(t)) ≡ K, (20)

for some constantK. Regular and abnormal extremals,
corresponding toγ0 6= 0 andγ0 = 0 respectively, are studied
in the following two sections.

A. Regular Extremals

We may now scaleF and assumeγ0 = − 1
2 . Rewriting

the Hamiltonian we getF = γ1 cos θ + γ2 sin θ + γ3u− u2

2 .
Maximization ofF in (19) implies that

u =







−1 if γ3 < −1

γ3 if −1 ≤ γ3 ≤ 1

1 if γ3 > 1

. (21)

Equations (16), (17), and (18) can be solved forγ to obtain

γ(t) =





e1

e2

e1y − e2x + e3



 , (22)

in which e1, e2, ande3 are constant. Allei’s cannot be zero,
otherwise the extremal is a straight line. Letℓ : e1y− e2x+

e3 = 0, ℓ+ : e1y−e2x+e3 = 1, andℓ− : e1y−e2x+e3 = −1

be three lines in the plane. The control law (21) says that
u = γ3 if the car is moving betweenℓ− andℓ+. Otherwise,
u = 1 or−1 depending on the position of the car with respect
to the lines. Figures 2 and 3 show a few examples of curves
that satisfy such control law. These paths are composed of
turn with minimum radius, straight line segment, and elastica
[21], [38].

B. Abnormal Extremals

Abnormal extremals correspond toγ0 = 0. If K = 0

in (20), then the extremal is of zero duration. IfK > 0,
then the extremal is a time-extremal for the Dubins car.
If K < 0, then the extremal is also an extremal of the
functionalI(u) =

∫ T

0
−dt. We call such extremal alocally

longest curve, because it can be a local minimum ofI(u),
or equivalently a local maximum of the length functional.

Further analysis of (19) leads to the following control law:

u = sgn(γ3) if γ3 6= 0, (23)

u ∈ [−1, 1] if γ3 = 0. (24)

Depending on the sign ofK, there are two different sets
of extremals: time-extremals and locally longest curves.

1) K > 0, time-extremals:In this case,F = e1 cos θ +

e2 sin θ + |e1y − e2x + e3| = K > 0. Moreover, allei’s
cannot be zero. Thus, the extremal satisfies the PMP with
the length cost functional

∫ T

0 dt. Thus, it is composed of
turn with minimum radius and straight line segment. The
extremal can tangentially joinℓ or diverge fromℓ. Figure 4
depicts two examples of time-extremals.
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Fig. 2. Some examples of curves with prescribed length for the Dubins
car; see also Figure 3

2) K < 0, locally longest curves:The following con-
straint holds:

F = e1 cos θ + e2 sin θ + |e1y − e2x + e3| = K < 0. (25)

In this case, the extremal cannot tangentially joinℓ unless
it violates the constraint. Hence, eitheru ≡ 0 or u(t) =

sgn(e1y(t) − e2x(t) + e3) and e1 cos θ + e2 sin θ + |e1y −

e2x+e3| < 0. More precisely, either the extremal completely
lies on ℓ, or it is composed of consecutive arcs of circle of
length less thanπ. In Figure 5, the lineℓ and an example of a
locally longest curve is shown. Figure 6 shows an elongation
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ℓ

ℓ

Fig. 4. Two time-extremals
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Fig. 5. Locally longest curves for the Dubins car
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Fig. 6. Elongation of a Dubins shortest pathr(t) to a locally longest curve
p(t)

from r(t), a Dubins shortest path, to a locally longest curve.

V. T IME-OPTIMAL TRAJECTORIES FOR THEA IRPLANE

Going back to our original quest, which was to find time-
optimal paths for our airplane, recall that the final altitude
plays a major role. We distinguish three cases: low, medium,
and high goal altitude. In order to precisely define each case
we give the following definition.

Def 2. Let ∆ be theDubins distanceof (xg, yg, θg) from
(0, 0, 0). More precisely, let∆ denote the duration, or
equivalently the length, of the shortest Dubins curve from
(0, 0, 0) to (xg , yg, θg). We call the final altitudelow if
|zg| ≤ ∆, medium if ∆ < |zg| < ∆ + 2π, and high if
|zg| ≥ ∆ + 2π.

A. Time-optimal Trajectories for Low Goal Altitude

As we mentioned before, following the shortest Dubins
curve with an unsaturated altitude velocity is a time-optimal
strategy for low goal altitudes. This case corresponds to
c3 = 0 in the PMP analysis in Section III. Note that the
duration of such trajectory is∆. It is obvious that there exists
no trajectory transferring the system faster from the initial
configuration to the goal configuration.

Lemma 1. For a low goal altitude, a time-optimal trajectory
for the system (1) consists of the shortest Dubins curve with
altitude velocityuz =

zg

∆
.

B. Time-optimal Trajectories for High Goal Altitude

If the goal altitude is high, the system has enough time to
follow a helix once it reaches the goal point in the plane and
goal orientation. Hence, the shortest Dubins curve followed
by a helix all with saturated altitude velocity is a time-
optimal strategy in this case. This case corresponds toc3 6= 0

in Section III. The duration of such trajectory is|zg|. There
exists no trajectory taking the system faster from the initial
to the goal.

Lemma 2. For a high goal altitude, a time-optimal trajectory
for the system (1) is composed of two pieces. Along both
piecesuz = sgn(zg). The projection of the first piece onto the
(x, y, θ)-space is the shortest Dubins curve for(xg, yg, θg).

The second piece is a helix. The control isuθ =
2π

|zg| − ∆
along the second piece.

The system first traverses the shortest Dubins curve with
saturated altitude velocity along such time-optimal trajectory.

It then traverses a helix, i.e. a full circle in the plane with
saturated altitude velocity.

C. Time-optimal Trajectories for Medium Goal Altitude

If there is a path for the Dubins car from the initial
configuration to the goal configuration in time|zg|, then the
time-optimal trajectory for the system corresponds toc3 6= 0

in Section III. In this case, the altitude velocity is saturated.
If there is no path for the Dubins car from the initial
configuration to the goal configuration in time|zg|, then
the time-optimal trajectory for the system must correspond
to c3 = 0. The altitude velocity is not saturated in this
case. Thus, the projection of the time-optimal trajectory onto
the (x, y, θ)-space is a Dubins time-extremal. Dubins time-
extremals are composed of turn with minimum radius and
straight line segments. We presented both cases in Section
IV.

VI. CONCLUSIONS

We introduced the Dubins airplane which extends the
Dubins car with altitude. We gave a characterization of
the time-optimal trajectories for the Dubins airplane. For
low and high final altitudes, the time-optimal trajectories
respectively consist of the Dubins curve with unsaturated
altitude velocity, and the Dubins curve followed by a helix
with saturated altitude velocity. For medium altitudes in
between low and high, different cases were recognized. The
time-optimal trajectory is either a Dubins extremal (not the
shortest) with unsaturated altitude velocity or a Dubins path
of certain length with saturated altitude velocity. We gave
a method to find a Dubins path with prescribed length if it
exists. We also gave an analysis of locally longest curves for
the Dubins car, i.e. those paths that may not be infinitesimally
elongated. Numerical techniques can be used to compute
the control synthesis. Analytical solution for the control
synthesis remains open for this problem.
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