Efficient Computation of Optimal Navigation Functions for

Nonholonomic Planning

Prashanth Konkimalla

Steven M. LaValle

Department of Computer Science
Iowa State University
Ames, TA 50011 USA

1-515-294-2259

1-515-294-0258 (FAX)

{prasanth,lavalle}Qcs.iastate.edu

Abstract

We present a fast, numerical approach to comput-
ing optimal feedback motion strategies for a nonholo-
nomic robot in a cluttered environment. Although many
techniques exist to compute navigation functions that
can incorporate feedback, none of these methods is di-
rectly able to determine optimal strategies for general
nonholonomic systems. Our approach builds on previ-
ous techniques in numerical optimal control, and on our
previous efforts in developing algorithms that compute
feedback strategies for problems that involve nondeter-
ministic and stochastic uncertainties in prediction. The
proposed approach efficiently computes an optimal navi-
gation function for nonholonomic systems by exploiting
two ideas: 1) the principle of Dijkstra’s algorithm can be
generalized to continuous configuration spaces and non-
holonomic systems, and 2) a simplicial mesh represen-
tation can be used to reduce the complezity of numerical
interpolation.

1 Introduction

Many applications in robotics require computing a
motion strategy that brings a complex geometric body
from an initial configuration to a goal region while satis-
fying complicated, geometric constraints that model the
environment. Many of these systems involve nonholo-
nomic constraints due to contacts between the robot
and its environment. For example, these constraints
can arise from wheeled mobile robots [3, 11, 25], or ma-
nipulation of an object without form or force closure
[1, 19]. We are particularly interested in computing mo-
tion strategies for problems that involve the following
assumptions:

1. A complete geometric model is known for the robot
and the static part of its environment.

2. The executed trajectory of the robot might not
be predictable due to localization errors, avoidance
maneuvers, nonprehensile manipulation, modeling
errors, etc.

Figure 1: As an example, a navigation function can be
used to generate optimal motions for a car-like robot
from any initial configuration to a fixed goal region.

3. An optimal strategy is requested that brings the
robot from an initial configuration to a goal region.

4. Nonholonomic constraints exist for which there are
no analytical solutions to the shortest path problem
(e.g., there exist solutions in the case of Reeds and
Shepp curves [21]).

The first condition is reasonable for many problems,
and forms the basis for the vast majority of motion plan-
ning research (see, for example, [10]). The second con-
dition motivates us to define a navigation function or
potential function that is free of local minima and can
be used to define a feedback motion strategy. Naviga-
tion functions have been proposed for this purpose in
many robotics works (e.g., [6, 22, 24]). The continuous
Dijkstra paradigm [4, 20] has been developed for the
2D shortest-path problem, using techniques from com-
putational geometry. Level-set methods have also been
proposed to compute navigation functions for holonomic
planning problems [7]. Although existing methods ap-
ply to a broad class of problems, they do not directly

apply to our problems because of inclusion of both the
third and fourth conditions: optimality and nonholon-
omy. Many computational techniques exist for com-
puting optimal solutions to holonomic problems, and
many others exist for computing a path for nonholo-
nomic problems. A recent survey of nonholonomic plan-
ning methods appears in [12]. Most of these methods
do not produce optimal paths (an exception is the case
of a car-like robot with reverse), and in general, these
methods do not attempt to construct a navigation func-
tion or feedback strategy. The method presented in [2]
is perhaps most related to ours because it is able to find
optimal solutions for very general nonholonomic prob-
lems; however, the key distinction is that the method in
[2] does not construct an optimal navigation function.

Our goal is to present general, numerical approach
to computing an optimal navigation function for a non-
holonomic planning problem. Figure 1 shows a com-
puted example; for a given goal, a navigation function
can be used to generate a path from any initial config-
uration. We focus our efforts on kinematic solutions,
and make the traditional assumption that a separate
controller will be designed to satisfy system dynam-
ics. We also allow the optimal motion strategy to have
nonsmooth inputs. Under the restriction to smooth
inputs, Brockett’s condition would imply that time-
varying feedback control is needed. A recent overview of
dynamics, control, and tracking issues for car-like robots
is given in [18]

Emphasis is placed on developing a technique that
can be applied to a broad set of problems, as opposed
to requiring major adjustments to be made for a partic-
ular problem. In previous efforts we have demonstrated
the use of numerical dynamic programming computa-
tions with interpolation [15, 16] for computing optimal
feedback strategies for problems that involve nondeter-
ministic and stochastic uncertainties in prediction. The
current approach can be considered as a significant ad-
vancement over the techniques in [15, 16] that is much
faster in practice (typically by a couple of orders of mag-
nitude). The current approach applies both to the prob-
lems defined in [15, 16] and to the nonholonomic plan-
ning problem, which the primary focus of this paper.

2 Problem Formulation

Our problem is defined in a bounded 2D or 3D world,

W C RV, such that N =2or N = 3. Let O C W
denote a static obstacle region in the world. An n-
dimensional configuration space, C, captures position,
orientation, and/or other information for robot. Let
z € C denote a configuration. Let Cyr.. denote the
collision-free subset of the configuration space. Let u
be an m-dimensional vector of control inputs. A control
input could, for example, specify a particular steering
angle for a car-like robot. Let U C R™ represent the
space of possible control inputs. The task will be to
determine control inputs that depend on a current con-
figuration, will “drive” the robot into the goal region,
and will optimize a specified criterion.

The nonholonomic kinematic constraints can be
represented using control-theoretic notation as & =
f(z(t),u(t)). Let G C Cfree denote a fixed goal region.

In general, G might not be connected. A loss functional
can be defined that evaluates any configuration trajec-
tory and control function:

L= [Tt ut)i+ Q).

The term wu(t) yields the control input applied at time
t. With a given feedback motion strategy, v, this would
be chosen as u(t) = y(z(t)). The integrand I(z(t),u(t))
represents an instantaneous cost, which when inte-
grated, can be imagined as the total amount of energy
expended. The term @Q(x(T})) is a final cost that can
be used to penalize trajectories that fail to terminate in
G.

In most motion planning research the solution takes
the form of a path; however, in our case the solution in-
volves configuration feedback. Therefore, we construct
a real-valued function on the configuration space that
is used for navigation in the sense proposed in [22]. Let
the cost-to-go function, L* : Cfree = R U {00} repre-
sent the loss according to (1), that would be received
by choosing the optimal control input and driving the
system until time ¢ = Ty. The cost-to-go is also referred
to as a value function in [24].

We next define a discrete-time approximation in
which actions are performed at each At. The expression
z = f(x(t),u(t)) can be approximated in discrete time
as a difference equation, zx+1 = f(2zk, ur). For station-
ary systems the cost-to-go function can be expressed as

[9]:
L*(wy) = min {l (2, ur) + L (@r+1)} (2)

in which I (2, ur) is the loss (1) that accumulates over
time At. Our computational approach can be consid-
ered as a fast numerical technique that approximately
solves this difference equation.

The right side of (2) is used during execution to se-
lect the optimal action, ug, that should be taken at a
configuration xj. Even though L* will be represented
at discrete points, the values of L*(z) for any « € Cfree
can be obtained through an interpolation scheme (which
will be discussed in Section 3). This enables the control
to be determined from any state (i.e., the system is not
required to follow a grid or any other regular pattern;
it naturally obeys the nonholonomic constraints).

3 An Efficient Representation of L*

The main task in generating these optimal motion
strategies is to compute the navigation function. For
this, we will choose a set of points distributed uniformly
over the C-space and compute the cost-to-go function
at each point, which will be referred to as a control
point. We will explain the algorithm for computing the
cost-to-go function in Section 4. The cost-to-go is only
defined on the control points; however, we need to con-
sider smooth trajectories that do not necessarily visit
the control points. So, for any point which is not a con-
trol point, we compute the cost-to-go at that point by
interpolating it with the cost-to-go at the neighboring

control points, thus making the cost-to-go function con-
tinuous. Now we need to figure out how many neighbor-
ing control points need to be considered, which are they,
and how to interpolate the cost-to-go at these neighbors.

3.1 A Simple Interpolation Scheme

Linear interpolation schemes have been used exten-
sively for numerical optimal control computations (e.g.,
[8,9]). We can define an interpolation scheme as follows.
Let us consider a 3D C-space, although the ideas apply
to higher dimensions. Let C be divided into cubes with
control points as vertices. In this representation, any
point, z, in the space will have eight neighbors which
are the vertices of the cube that z is contained in. The
cost-to-go at each neighbor contributes to the cost-to-
go at the point. Now, we will compute the weights for
each neighbor. A neighboring vertex has more weight if
it is closer to z. If {p1,...,ps} are the neighbors, and
{f1,--.,P0s} are positive weights based on linear inter-
polation, then the cost-to-go at z is given by

8
L*(z) Z BiL* (pi)- ®3)
i=1

So, given any point in space, we need to follow three
steps to compute the cost-to-go at that point. 1) Find
the cube that contains the point. This step will be re-
ferred to as a point location problem. 2) Compute the
interpolation coefficient associated with each neighbor
(vertices of the cube) of the point and 3) Find the cost-
to-go for that point using the above equation. If the
above representation is used, steps 1 and 2 can be car-
ried out very efficiently, but the time complexity of step
3 is exponential in dimension. This is because the num-
ber of neighbors associated with any point is 2" (where
n is the dimension). So, an alternative representation
which can carry out all the three steps more efficiently
would be preferred. The main problem in using the
above representation is the large number of neighbors
associated with any point. If we can divide the cube
further into tetrahedra, then step 3 becomes simpler.
This is because the number of neighbors of any point
would reduce to 4 (or n + 1 in general) from 8 (or 27),
thus reducing the time complexity of step 3 from expo-
nential to linear in dimension. At the same time, we
need to make sure that this decomposition into tetra-
hedra does not complicate steps 1 and 2. Also, the
representation has to be general enough to work in any
dimension. Section 3.2 presents such a method.

3.2 Complete Barycentric Subdivision

To compute the cost-to-go function at any point effi-
ciently, we need to represent the C-space in such a way
that steps 1,2, and 3 in Section 3.1 can be carried out
efficiently. The main reason for dividing a cube fur-
ther into tetrahedra is to represent the space as union
of polytopes with n 4+ 1 vertices (which are called sim-
plezxes) instead of polytopes with 2" vertices. Dividing
the space into cubes can make the point location prob-
lem easy, but computing the cost-to-go (step 3) becomes

(a 1D-supercube)

(a 2D-Voronoi region) £ 0N
(a 2D-supercube)

Figure 2: An extension from 1D to 2D.

Figure 3: An extension from 2D to 3D.

complicated. To overcome this problem, we further di-
vide the cube into tetrahedra (in general, we divide hy-
percubes into simplexes).

It has been shown in [17] that an nD-cube must be di-

vided into at least 2" (n+ 1)~ (»+1)/2p! simplexes. Thus,
a 2D-cube (a square) can be divided into no less than
two triangles (2D-simplex). The minimum number of
tetrahedra that a 3D-cube can be divided into is found
to be 5. But, these kind of triangulations are not feasible
for our problem as it makes the point location problem
difficult. So, a special way of representation is chosen
that is most suitable for our problem. In our representa-
tion, we will first divide the space into cubes, and then
divide each set of eight cubes(which will be referred as
3D-supercube) into 48 tetrahedra as shown in figure 4.
Effectively, each cube is divided into 6 tetrahedra. In
general, an n dimensional C-space is divided in to nD-
cubes, and each set of 2" nD-cubes(nD-supercube) is
further divided into 2™n! simplexes. Figures 2 and 3
illustrate that this representation is general and is ap-

Figure 4: A 3D-supercube(set of 8 cubes) divided into
48 tetrahedra.

plicable to higher dimensional C-spaces. It is important
to note that we do not explicitly store simplexes; only
the control points are stored.

In each simplex, the interpolation weights are se-
lected as the barycentric coordinates [23]. This is the
set of positive coefficients f1,02,...,08n+1 such that

Z?'H Bi = 1 and each point, z, in the simplex can be

represented as a linear combination x = Z?'H Bix; in
which the z; are the vertices of the simplex.

Now, our problem is, given any point, find the sim-
plex that contains the point and find its barycentric
coordinates in that simplex. For this, we find the su-
percube that contains the point. Then, the coordinates
of the point in the supercube, with the center of the
supercube as origin, is computed. This requires a linear
translation of the coordinate frame which takes linear
time. At first sight, it may seem that, the point location
problem takes exponential time because the number of
simplexes the point can possibly be in is 2”n! (number
of simplexes in the supercube). We will show that, be-
cause of a special representation used, the point location
problem can be solved in just O(nlgn) time instead of
exponential time.

For simplicity, let supercube refer to a 3D-supercube.
First, we make the following observations about our rep-
resentation: 1) The center of the supercube is common
to all of the tetrahedra in the supercube. Hence, this is
a vertex of the tetrahedron that contains the point. 2)
Each supercube has six faces. Consider the 3D-Voronoi
region associated with each face. We will refer an n
dimensional Voronoi region as nD-Voronoi region. In
general, an nD-supercube has 2n faces and hence 2n
nD-Voronoi regions. The 3D-Voronoi region that con-
tains the point can be found by determining the co-
ordinate with highest magnitude. In other words, the
coordinate that is closest to a face is found. Once this
is done, the same observations as above are made, but
at dimension (n — 1). For the 3D case: 1) The center
of the corresponding face (which is a 2D-supercube) in
the 3D-Voronoi region is common to all the tetrahedra
in that 3D-Voronoi region and, in other words, common
to all the triangles on the face. Hence this too is a ver-
tex of the tetrahedron that contains the point. 2) The
2D-supercube (square) has 4 2D-Voronoi regions. See
Figures 2, 3 and 4. So, the problem reduces to finding
the 2D-Voronoi region that contains the point by finding
the coordinate with next highest magnitude. Once this
is done, the same thing as above is done at one more
dimension less (at 1D). The work involved in finding the
tetrahedron that contains the point, is the work involved
in arranging the coordinates of the point in decreasing
order of their magnitudes, which takes O(nlgn) time.
Hence the point location problem takes only O(nlgn)
time.

The next task is to find the barycentric coordinates
of the point in its tetrahedron. Suppose without loss of
generality that the corresponding supercube has been
scaled to contain unit cubes, centered at (0,0,0), and
the point z lies in the first octant (all coordinates are
between 0 and 1). If py, pa, p3, and p, are the vertices of
the tetrahedron found at each step, let 31, 82, 83 and 8,
are the respective barycentric coordinates, and x1, z2,
and x5 are the magnitudes of coordinates of the point (in
decreasing order), then 8y =1 — 11, B2 = 21 — 2, B3 =

Ty — 3, B4 = x3 — 0. In general, in an n dimensional
C-space, for 1 < i < n, if p; is the i** vertex of the
simplex, and ; is the barycentric coordinate of p;, x; is
the it* coordinate of the point z, then 8; = z;_1 — i,
where g = 1, £,41 = 0. It can be seen from above
that, computation of barycentric coordinates takes O(n)
time, since the arrangement of coordinates of the point
in decreasing order of magnitude has already been done
in the previous step.

Finally, the cost-to-go at z, is found by using (3).
Because there are only n+1 interpolation neighbors, this
step now takes only O(n) time. Hence, the computation
of cost-to-go at any point in space takes O(nlgn) time,
as opposed to O(2") time using the simple approach.
The improvement is also significant in practice (i.e., the
scaling constant in the analysis is small).

4 The Algorithm

This algorithm is an adaptation of the method in
[14], and it performs a kind of wavefront propagation by
iteratively constructing nonholonomic preimages. The
n-dimensional C-space is divided into simplexes as de-
scribed above. Let p be a control point, and let P be the
set of all control points. Let C-set be the set of all con-
trol points whose optimal cost-to-go value has already
been correctly computed. If all of the vertices of a sim-
plex belong to C-set, then the simplex is considered a
computed simplez (it can be used for interpolation), and
the union of all the computed simplexes is called the
computed region. The algorithm iteratively grows the
computed region outward from the goal. Let the preim-
age, P-set, be a set of all control points in Cfree \ G,
from which the robot can get into the computed region
in a single time step, At.

Our objective is to compute the cost-to-go at each
p. The first step in the algorithm is to initialize P.
Let Pyoas = {p | p € G}. For each p € Pyq, assign
L*(p) = 0, and for each p ¢ P,,q, assign L*(p) = oo.
Then, at Step 2, we initialize C-set to Pyoq . Steps 4 to
10 are contained in the main iteration of the algorithm.
Each iteration in this repeat loop forms a stage. Ini-
tially, at stage 1, C-set < Pjoq- In Step 4, P-set is
determined. Let T-set be a temporary set of control
points. In Step 5, T-set is set to . In Steps 6 to 9, we
remove a control point, p, from P-set until it is empty.
Each time we compute the cost-to-go at that control
point using (2) and add it to T-set. The point p is ini-
tially added to T-set instead of C-set in each iteration
because it may effect the computation of cost-to-go at
the control points removed in subsequent iterations. In
other words, if p was instead added to C-set instead, the
computed region may expand in each iteration, thus ef-
fecting the computation of cost-to-go at rest of the con-
trol points in P-set. To avoid this, we add p to T-set
instead. Thus, the computed region is kept constant
between Steps 6 and 9. Hence, at each stage, the com-
puted region expands only once. This happens at Step
10, when all of the control points in T-set are added to
C-set.

The most challenging and time-consuming part of the
algorithm is the computation of L*(p) at Step 8. As ex-
plained in Section 3, the cost-to-go at any point in the

OPTIMAL _NAVIGATION_FUNCTION()
1 Initialize P
2 C-set < Pyou
3 repeat

4 P-set « preimage(C-set)

5 T-set < 0

6 while (P-set !=0) do

7 p + get_element(P-set)

8 Compute L*(p)

9 T-set + T-set U {p}

10 C-set + C-set U T-set

11 until (T-set ! = ()

12 Return L*

Figure 5: This algorithm computes the optimal feedback
motion strategy in a single pass over the configuration
space.

finalized region is found by first locating the simplex
that contains the point, finding its barycentric coordi-
nates in that simplex, and then interpolating them with
the cost-to-go at the respective vertices.

5 Results

This section presents some results from an implemen-
tation of the algorithm in Figure 5 using GNU C++
and LEDA under Linux on a Pentium Pro PC. We have
implemented the algorithm and computed navigation
functions for two different nonholonomic problems: the
planning for a car-like robot, and manipulation planning
by pushing. The configuration space for each problem
has three degrees of freedom.

5.1 Car-like Robot

In this problem, a car-like robot with nonholonomic
constraints and a minimum turning radius is driven to
its goal, optimizing the distance traveled. Alternatively,
the number of reversals can be minimized by adding ex-
tra cost to backward motions. Figures 1 and 7.a show
the trajectories of the robot from several chosen con-
figurations for two different problems in which the car
is allowed to move both forward and backward. Figure
6 shows the computation times for the problem in Fig-
ure 1. The precomputation time is shown separately,
which is a simple bitmap computation of the configura-
tion space (it can be accomplished by much fast tech-
niques than what is shown here; see, for example, [5]).
Figure 7.a shows a problem in which G has multiple
connected components. The navigation function natu-
rally steers the robot to the appropriate component of

Figure 7.b shows the level set contours of L* for a
point car-like robot that can only go forward.

Res Precmp | DP

[I| x |J] x |[K| | (sec) | (sec)
60 x 60 x 30 8.25 27.22
100 x 100 x 30 | 22.62 | 34.55

Figure 6: Computational performance from a GNU
C++ implementation on a Pentium Pro PC running
Linux. The columns denote: P = problem number,
Res = resolutions, Precmp = time to compute C-space
bitmap, DP = computation time for generating the op-

timal navigation function.
b.

Figure 7: a) A car-like robot problem with multiple
goals. Given any initial configuration, the car goes to
the nearest goal, thus demonstrating the optimality of
the solution. b) The level sets of the cost-to-go function
for a particular orientation of a car that can go only
forward.

5.2 Push-Planning

In the case of the push planning problem [1, 19], the
robot’s task is to push a box to the goal while avoiding
obstacles. The box can be pushed from along one of two
edges (which are highlighted in the figure). It is assumed
that the robot makes a line contact with the robot. The
dimensions of the robot are not considered and it is
assumed that the robot can switch from one edge to
other with out colliding with any of the obstacles. We
can optimize paths either by the distance traveled, the
number of reversals, or some combination. Figure 8.a
shows the trajectory of the box if no cost is added for
switching of edges. In this case, it takes 121 time steps,
switching edges 6 times to reach the goal. Figure 8.b
shows the trajectory of the box if a finite cost is added
for switching of edges. In this case, it takes 125 time
steps, switching edges only 2 times to reach the goal.

6 Conclusions

An approach has been presented for computing opti-
mal feedback motion strategies for nonholonomic plan-
ning problems. Instead of precomputing a path, the

N

L L TN

= -
(O S

a b.

Figure 8: Trajectory of the box: a) when no cost is
added for switching edges; b) when a finite cost is added
for switching edges.

solution takes the form of a navigation function, as con-
sidered in [22]. Two improvements are made over our
previous approach to the problem of numerically com-
puting optimal cost-to-go functions [13]: 1) The solution
can be obtained in a single iteration over the configu-
ration space; 2) the complexity of the interpolation has
been reduced from O(2") to O(nlgn). The technique
developed is general in nature and can be extended to
higher degree-of-freedom problems. It is important to
note that once a navigation function is computed, it can
be quickly utilized during execution. We hope to apply
this algorithm to more difficult nonholonomic, and even
kinodynamic planning problems, of up to six degrees
of freedom. The computational savings from using our
new interpolation scheme make extensions to the harder
problems more feasible.

References

[1] P. K. Agarwal, J.-C. Latombe, R. Motwani, and
P. Raghavan. Nonholonomic path planning for push-
ing a disk among obstacles. In IEEFE Int. Conf. Robot.
& Autom., 1997.

[2] J. Barraquand and J.-C. Latombe. Nonholonomic
multibody mobile robots: Controllability and motion
planning in the presence of obstacles. Algorithmica,
10:121-155, 1993.

[3] L. G. Bushnell, D. M. Tilbury, and S. S. Sastry. Steer-
ing three-input nonholonomic systems: the fire truck
example. Int. J. Robot. Res., 14(4):366-381, 1995.

[4] J. Hershberger and S. Suri. Efficient computation of
Euclidean shortest paths in the plane. In Proc. 34th
Annual IEEE Sympos. Found. Comput. Sci., pages 508—
517, 1995.

[5] L. E. Kavraki. Computation of configuration-space ob-
stacles using the Fast Fourier Transform. IEEE Trans.
Robot. & Autom., 11(3):408-413, 1995.

[6] O. Khatib. Real-time obstacle avoidance for manipula-
tors and mobile robots. Int. J. Robot. Res., 5(1):90-98,
1986.

[7] R. Kimmel, N. Kiryati, and A. M. Bruckstein. Multi-
valued distance maps for motion planning on surfaces
with moving obstacles. IEEE Trans. Robot. & Autom.,
14(3):427-435, June 1998.

[8] R. E. Larson. A survey of dynamic programming com-
putational procedures. IEEE Trans. Autom. Control,
12(6):767-774, December 1967.

[9] R. E. Larson and J. L. Casti. Principles of Dynamic
Programming, Part II. Dekker, New York, NY, 1982.

[10] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[11] J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Mur-
ray. A motion planner for nonholonomic mobile robots.
IEEE Trans. Robot. & Autom., 10(5):577-593, October
1994.

[12] J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guide-
lines in nonholonomic motion planning for mobile
robots. In J.-P. Laumond, editor, Robot Motion
Plannning and Control, pages 1-53. Springer-Verlag,
Berlin, 1998.

[13] S. M. LaValle. A Game-Theoretic Framework for Robot
Motion Planning. PhD thesis, University of Illinois,
Urbana, IL, July 1995.

[14] S. M. LaValle. Numerical computation of optimal navi-
gation functions on a simplicial complex. In P. Agarwal,
L. Kavraki, and M. Mason, editors, Robotics: The Algo-
rithmic Perspective. A K Peters, Wellesley, MA, 1998.
To appear.

[15] S. M. LaValle and S. A. Hutchinson. An objective-
based framework for motion planning under sensing and
control uncertainties. International Journal of Robotics
Research, 17(1):19-42, January 1998.

[16] S. M. LaValle and R. Sharma. On motion planning
in changing, partially-predictable environments. Inter-
national Journal of Robotics Research, 16(6):775-805,
December 1997.

[17] Carl W. Lee. Subdivisions and Triangulations of Poly-
topes. CRC Press, 1997.

[18] A. De Luca, G. Oriolo, and C. Samson. Feedback con-
trol of a nonholonomic car-like robot. In J.-P. Lau-
mond, editor, Robot Motion Plannning and Control,
pages 171-253. Springer-Verlag, Berlin, 1998.

[19] K. M. Lynch and M. T. Mason. Stable pushing: Me-
chanics, controllability, and planning. Int. J. Robot.
Res., 15(6):533-556, 1996.

[20] J. S. B. Mitchell. Planning Shortest Paths. PhD thesis,
Stanford University, 1986.

[21] J. A. Reeds and L. A. Shepp. Optimal paths for a
car that goes both forwards and backwards. Pacific J.
Math., 145(2):367-393, 1990.

[22] E. Rimon and D. E. Koditschek. Exact robot navigation
using artificial potential fields. IEEE Trans. Robot. &
Autom., 8(5):501-518, October 1992.

[23] J. J. Rotman. Introduction to Algebraic Topology.
Springer-Verlag, Berlin, 1988.

[24] S. Sundar and Z. Shiller. Optimal obstacle avoidance
based on the Hamilton-Jacobi-Bellman equation. IEEE
Trans. Robot. & Autom., 13(2):305-310, April 1997.

[25] P. Svestka and M. H. Overmars. Coordinated motion
planning for multiple car-like robots using probabilistic
roadmaps. In IEEE Int. Conf. Robot. & Autom., pages
1631-1636, 1995.

