Numerical Computation of Optimal Navigation Functions

on a Simplicial Complex

Steven M. LaValle, Iowa State University, Ames, IA, USA

This paper presents a general approach to comput-
ing optimal feedback motion strategies for a holonomic
or mnonholonomic robot in o static workspace. The
proposed algorithm synthesizes a numerical navigation
function defined by interpolation in a simplicial com-
plex. The computation progresses much in the same
way as Dijkstra’s algorithm for graphs; however, the
proposed approach applies to continuous spaces with
geometric and nonholonomic constraints. By choos-
ing a simplicial complex representation instead of a
straightforward grid, the number of interpolation op-
erations (which are required for continuous-state, nu-
merical dynamic programming) is reduced from 2" to
n+1, in which n is the dimension of the configuration
space. Some preliminary findings are discussed for an
implementation of the algorithm for the case of a two-
dimensional configuration space.

1 Introduction

Many applications in robotics require automatically
computing a motion strategy that brings a complex
geometric body from an initial configuration to a goal
configuration while satisfying geometric constraints.
Basic motion planning (or path planning) approaches
typically do not apply in cases that are further compli-
cated by imprecise localization and nonholonomic con-
straints. For example, in mobile robot or vehicle navi-
gation, both the current and future configurations can
only be estimated during execution using sensing and
predictive models. A pre-planned path might have to
be repeatedly adjusted due to such uncertainties; how-
ever, a preferable alternative would be to immediately
know the optimal motion command given the current
configuration (assuming the geometry and goal con-

figuration are fixed). This corresponds to a feedback
motion strategy, which is computed using the method
presented in this paper. Arguments for directly incor-
porating feedback in the form of a navigation func-
tion were also made in [26]. Furthermore, applications
continue to appear that involve the challenge of incor-
porating nonholonomic constraints on the system ve-
locities (e.g., wheeled-robot systems [6, 17, 29], push
planning [1, 23]).

The focus of this paper is on motion planning prob-
lems that require either feedback solutions, nonholo-
nomic analysis, or both. Emphasis is placed on devel-
oping a technique that can be applied to a broad set
of problems, as opposed to requiring particular simpli-
fications that can be made for a particular problem.
Although useful and interesting progress is often made
by exploiting characteristics of a particular problem,
a more general approach is often more likely to find
immediate application, even if the approach is inferior
for particular problems that are better solved by a spe-
cialized approach. In addition, one is often willing to
exchange strong guarantees on performance (such as
completeness) if the result is to obtain a method that
is more broadly applicable. This philosophy shift was
once seen in path planning research. Approaches such
as the randomized potential field planner [2] or the ran-
domized roadmap planner [11], offer weaker statements
regarding the performance (i.e., probabilistic complete-
ness as opposed to completeness); however, their gen-
eral applicability and practical efficiency has stimu-
lated their use in a variety of applications.

In this paper, a feedback strategy is computed nu-
merically, which implies that the solution quality gen-
erally depends on resolution and quantization errors.
This implies resolution completeness, and in the limit-

ing case, the numerical solution converges to an opti-
mal solution. This computational approach is also in-
tended as a step toward a more general approach that
can additionally handle complications such as stochas-
tic or nondeterministic uncertainty in sensing and pre-
dictability, multiple robots, and dynamics. Such gener-
alization can be made using the unified mathematical
framework presented in [19].

Relationship to Dijkstra’s algorithm The com-
putational approach offered in this paper is built from
the principle of optimality as it appears in optimal con-
trol theory [13], and is closely related to the level set
method in [28]. It also shares similarities with Dijk-
stra’s algorithm for computing single-source shortest
paths in a graph; however, in our case a continuous
configuration space must be considered (as opposed
to a graph). It might seem possible to construct a
graph by quantizing the configuration space to obtain
vertices and using standard four-neighbors to obtain
edges. However, the application of Dijkstra’s algo-
rithm (or wavefront propagation) to the resulting graph
would not necessarily yield solutions that obey non-
holonomic constraints. Furthermore, even results for
holonomic problems will generally not be optimal be-
cause lengths are measured by forcing motions to occur
along the grid (i.e., Manhattan distance is obtained in-
stead of Euclidean distance). The approach proposed
in this paper can be viewed as a way to make Dijkstra’s
algorithm yield the right results for nonholonomic mo-
tion planning problems in a continuous configuration
space with geometric constraints. Instead of a graph
or a grid, a simplicial complex is constructed; this is
used to represent a continuous cost-to-go function (or
navigation function) which serves the same purpose as
the costs that are placed on vertices in Dijkstra’s al-
gorithm. Another related approach is the “continuous
Dijkstra paradigm” [9, 25], which is used to efficiently
compute holonomic shortest paths in a 2D polygonal
environment by identifying critical events that corre-
spond to a propagating wavefront of level-set curves
that measure distance from a goal position.

Relationship to Barraquand-Latombe approach
The proposed approach shares similarities with the

S. M. LaValle

nonholonomic planning approach used in [3, 24], which
involves a branch-and-bound exploration from an ini-
tial configuration, using a discretized approximation of
time and the set of possible control inputs. Each explo-
ration step is achieved by applying a control input and
integrating the system equation over a small time to
obtain a new configuration. Within a given neighbor-
hood, only a single configuration is saved. Eventually,
the search expands until a configuration near the goal
is reached. In our approach, a numerical navigation
function is constructed by incremental expansion from
a goal region as opposed to the initial configuration.
Instead of keeping track of reachable configurations,
our samples of the configuration space represent inter-
polation control points from which approximate values
of the navigation function can be computed. Instead
of determining a path, the navigation function is used
as a representation of a configuration-feedback motion
strategy that provides the optimal control input from
anywhere in the configuration space. This becomes
particularly valuable when there is a high degree of
unpredictability in future configurations.

2 Problem Formulation

Basic concepts A workspace is defined that com-
pletely and precisely characterizes the environment of
a robot. An n-dimensional configuration space C cap-
tures position, orientation, and/or other information
for robot. Let x € C denote a configuration. Let
Csree denote the collision-free subset of the configu-
ration space. Let G C Cype. represent the goal region.
Let u be an m-dimensional vector of control inputs. A
control input could, for example, specify a particular
steering angle for a car-like robot. Let U C R™ repre-
sent the space of possible control inputs. The task is
to determine control inputs that depend on a current
configuration, “drive” the robot into the goal region,
and optimize a specified criterion.

It will be helpful to define time in the upcoming con-
cepts. Suppose that there is some initial time, t = 0, at
which the robot is at x;p;;- Suppose also that there is
some final time, T (one would like to at least have the
robot at the goal before t = Ty). It will be assumed

Computation of Optimal Navigation Functions

that the system is time-invariant (i.e., no decisions will
depend on the particular time).

Incorporating nonholonomic constraints Let &
represent the velocity of the robot in the configu-
ration space. The nonholonomic constraints can be
represented using control-theoretic notation as & =
f(z(t),u(t)) [10]. The case of &(t) = u(t) corresponds
to a holonomic planning problem. Suppose that any
control input is allowed if it satisfies ||u|| =1 or u = 0.
This implies that one can move the robot in any al-
lowable direction at a local tangent space. A solu-
tion to a holonomic planning problem can be repre-
sented as a smooth path h : [0,Tf] = Cyree such that
2(0) = 24t and 2(Ty) € G. By setting the control

input as u(t) = %, the original path can be obtained.

For nonholonomic problems, one will only be allowed
to move the robot through a function of the form
& = f(z(t),u(t)). For example, as described in [15],
p. 432, the equations for the nonholonomic car robot
can be expressed as £ = vcos(d), y = wvsin(f), and
6 = £ tan(¢), in which v is the speed of the rear axle
midpoint, L is the distance between the front and rear
axles, and ¢ is the steering angle. Using the notation
in this paper, (&,7,6) becomes &, and (v,¢) becomes
u. Other nonholonomic models, such as those used for
push planning in [23] can be encoded in this way. The
function f can be considered as a kind of interface be-
tween the user and the robot. Commands are specified
through w(t), but the resulting velocities in the con-
figuration space get transformed using f (which can
generally prevent the user from directly controlling ve-
locities).

Incorporating feedback As stated in Section 1 the
exact path executed by the robot often cannot be pre-
dicted in practice. Instead of using a predefined control
input, u(t), for all ¢ € [0,T%], it becomes necessary to
allow the control input to depend on the particular
configuration of the robot during execution. In an ap-
plication, such as mobile robot navigation, a sensing
module might be used to provide repeated estimates
of the current configuration. The control input should
be chosen in light of this estimated configuration. This
motivates the definition of a feedback motion strategy

as a function, v : Csree — U. Thus, at a configuration
x € Cyree, u = y(z) specifies a particular control input.
Note that the computational task is to compute a rep-
resentation of a function of configuration, as opposed
to a path, which is standard in motion planning.

Because analytical solutions are avoided, one is obli-
gated at some point to approximately represent . This
task requires special attention. Suppose that we would
like to approximate v using a discretized set of points
and linear interpolation (which are used, for example,
in the trapezoid rule for numerical integration). This
becomes problematic because interpolations in U can
be meaningless. For example, suppose u € U denotes
“go forward” for a car-like robot, and u' € U denotes
“go backwards.” If v(z) = u and (z') = ' for two
close configurations (i.e., ||z — z'|| is less than some
small € > 0), then what would be the appropriate in-
put for a configuration that lies between xz and z'? It
would certainly be senseless to compute a control in-
put that denotes “stop” by interpolation. This would
cause the car-like robot to be permanently fixed at the
same configuration.

It will be seen in Section 3 that the approximation
difficulty can be overcome by the use of a real-valued
navigation function. The navigation function will be
ultimately approximated by determining its values at
vertices in a simplicial complex and using linear inter-
polation. The appropriate control input can be recov-
ered during execution by performing some fast, local
computations using the navigation function.

Incorporating optimality A loss functional is de-
fined that evaluates any configuration trajectory and
control function:

Ty
= [i0.uei+ Q).
0

The term w(t) yields the control input applied at time
t. With a given feedback motion strategy, v, this would
be chosen as u(t) = v(x(t)). The integrand I(z(t),u(t))
represents an instantaneous cost, which when inte-
grated can be imagined as the total amount of energy
that is expended. The term @Q(x(Ty)) is a final cost
that can be used to induce a preference over trajecto-

ries that terminate in a goal region of the configuration
space.

As an example, the following measures the path
length for a trajectory that leads to the goal:

Ty
z(t)||dt if (Ty) € G
P B Ol Mec o
00 otherwise
The term fOTf || (#)||dt measures path length.

approximation Since numerical
computations will be performed, the continuous-time

Discrete-time

formulation will be approximated in discrete time.
With the discretization of time, [0,T%] is partitioned
into stages, denoted by k € {1,...,K + 1}. Stage k
refers to time (k — 1)At¢. The final stage is given by
K = |Ty/At|. Let xj represent the configuration at
stage k. At each stage k, an action uy can be chosen
from an action space U. Because

d t+ At) — x(t

@ _ y TEEAD Z () 3)

dt At—0 At
the equation & = u can be approximated as

Thy1 = T + Atuy, (4)

in which z, = z(t), xp41 = z(t + At), and uy, = u(t).
The equation & = f(z(t),u(t)) can be approximated
by a transition equation of the form zyy; = f(xg, uk)-

A discrete-time representation of the loss functional
can also be defined:

L(z1,. . TK41,U1, -, UK) =
K
Zlk(xkauk) +lrki1(Tr41), (5)
k=1

in which l; and k41 serve the same purpose as [and
@ in the continuous-time loss functional.

A path-planning problem that does not consider op-
timality can be represented in discrete time by let-
ting I, = 0 for all £ € {1,...,K}, and defining
the final term as lxi1(zk41) = 0 if zx € G, and
lk+1(zk41) = 1 otherwise. This gives equal preference
to all trajectories that reach the goal. To approximate

S. M. LaValle

the problem of planning an optimal-length path, I =1
for each k € {1,..., K} such that 2 ¢ G. The final
term is then defined as Ixy1(zk+1) =0 if zx41 € G,
and lg41(zk41) = 0o otherwise.

3 Optimal Navigation Functions

Usually in motion planning the solution takes the form
of a path; however, in our case the solution involves
configuration feedback. One possibility is that the al-
gorithm can return a function that maps configurations
into actions. Thus from any location in the configura-
tion space, the robot will have the appropriate action
during the execution of the optimal strategy.

This section presents the concept of cost-to-go func-
tions, which are used as a navigation function in the
sense proposed in [26]. Instead of building a direct
representation of the feedback strategy, the proposed
approach uses a cost-to-go function as an intermedi-
ate representation from which the appropriate action
can quickly be obtained. It will be seen that this ap-
proach is advantageous for the numerical computations
because optimal actions can be selected by performing
interpolations on the cost-to-go function. It is generally
inappropriate to “interpolate” on the space of possible
actions.

The principle of optimality Initially, a cost-to-go
function will be defined for each stage k. A cost-to-
go function will eventually be obtained that is stage
independent. The cost-to-go function L} : Cfree —
R U {00} represents the loss that will accumulate if the
optimal trajectory is executed from stage k until stage
K +1, starting at configuration zy € Cyre.. Note that
L,y = Ik from (5). If K is sufficiently large, then
for reasonably-behaved planning problems there exists
an ¢ < K such that L} = Lj for all ¢ < k. This will
hold for problems in which: 1) all optimal trajectories
that reach the goal arrive in a finite amount of time;
2) infinite loss is obtained for a trajectory that fails
to reach the goal; 3) no loss accumulates while the
robot “waits” in the goal region; 4) the environment
and motion models are stationary.

Bellman’s principle of optimality provides a powerful
constraint on the solution structure [4], which directly

Computation of Optimal Navigation Functions

leads to a numerical computation approach. With a
discrete-time model, a difference equation is obtained
that relates successive cost-to-go functions. This dif-
ference equation will now be derived. The cost-to-go
function at stage k is formally defined as

K
Li(zx) = ukabK {Zli(xi,ui) + lK+1(33K+1)} :

i=k
(6)
The term ~y;(x;) represents u;, the action chosen at
stage i from configuration z;. Equation (6) represents
the loss that will be received under the execution of the
optimal strategy, v*, from stage k to stage K + 1.

The cost-to-go can be separated:
L:: (;Ek) = minuk minuk+1,...,uK

K
{lk(xkauk)+ > li(xi7ui)+lK+l($K+l)}' (7)

i=k+1

The second min does not affect the I term; thus, it
can be removed to obtain
Li(zk) =

K
min llk(zk,uk) + min { E li(zi,u¢)+l1{+1(zx+1)}‘| .
LK

Uk
i=k41
(8)

The second portion of the min represents the cost-to-
go function for stage k + 1, yielding;:

Lj(zx) = min {le(@r, up) + Liya (Tega) } - (9)

This final form represents a powerful constraint on the
optimal strategy. The optimal action at stage k and
configuration z depends only on the cost-to-go values
at stage k+1. Furthermore, only the particular cost-to-
go values that are reachable from the transition equa-
tion zy1 = f(xk,ur) need to be considered. The de-
pendencies are local; yet, the globally-optimal strategy
is characterized. This property will be exploited by the
methods presented in Section 4.

Using the cost-to-go as a navigation function
As stated previously, if K is sufficiently large, there
exists an ¢ such that for all £ < 4 and all z € Cpree,
Li(zy) = L} (x;). In this case, L* will be used instead
of L} because the cost-to-go is stage-invariant.

Suppose that L* has been numerically computed,
and that values of L*(x) for any & € Cfpree can
be obtained through a quantization and interpolation
scheme (which will be discussed in Section 4). To exe-
cute the optimal strategy, an appropriate action must
be chosen using the cost-to-go representation from any
given configuration. One approach would be to sim-
ply store the action that produced the optimal cost-to-
go value for each quantized configuration. The appro-
priate action could then be selected by recalling the
stored action at the nearest quantized configuration.
This method could cause errors, particularly since it
does not utilize any benefits of interpolation. A pre-
ferred alternative is to select actions by locally eval-
uating (9) at the current configuration. Interpolation
schemes can also be used in this step. Note that al-
though the approach to select the action is local (and
efficient), the global information is still taken into ac-
count (it is encoded in the cost-to-go function). Once
the optimal action is determined, the next configura-
tion is obtained (i.e., not a quantized configuration)
using zx4+1 = f(ug,zx). This form of iteration contin-
ues until the goal is reached or a termination condition
is met. Note that this scheme does not force the robot
to traverse quantized configurations.

During the time between stages, the trajectory can
be linearly interpolated between the endpoints given
by the discrete-time transition equation, or can be in-
tegrated using the original continuous-time transition
equation. Once the optimal action is determined, an
exact next configuration is obtained (i.e., not a quan-
tized configuration). This form of iteration continues
until the goal is reached or a termination condition is
met.

4 Computational Approach

This section presents an algorithm for computing the
optimal navigation function L* for a given problem.
The optimal motions are executed by selecting actions
using L* as a navigation function, as discussed in Sec-
tion 3. Two basic methods are described. The first
method is derived from numerical dynamic program-
ming techniques presented in optimal control literature

[13, 14]. The method described here and several exten-
sions were implemented and tested on many problems
in [18, 20, 21]. The purpose of describing it here is to
provide a basis of comparison for the new method, for
which a description soon follows. The new method uses
many of the same assumptions as the existing method,
but computes the result with much better computa-
tional performance.

4.1 Previously established approach

For the purpose of discussion, it will be assumed that
Csree is a subset of Euclidean space. Topological is-
sues that arise on manifolds such as ®2 x S! (the case
of translation and rotation in the plane) will not be
treated here; however, only minor notational variations
are required to include such cases.

An optimal strategy can be computed by successively
building approximate representations of the cost-to-go
functions [18]. The most straightforward way to rep-
resent a cost-to-go function is to specify its values at
each location in a discretized grid. The first step is to
construct a representation of Ly ,. The final term,
lk+1(zK41), of the loss functional is directly used to
assign values of L% +1(a:K+1) at discretized locations.
Typically, lxt1(zky1) = 0 if k41 lies in the goal re-
gion, and Ik 41(zKy1) = 0o otherwise. This only per-
mits trajectories that terminate in the goal region. If
the goal is a point, it might be necessary to expand the
goal into a region that includes some of the quantized
configurations.

The dynamic programming equation (9) is used to
compute the next cost-to-go function, L}, and subse-
quent cost-to-go functions. For each quantized config-
uration, zr, a quantized set of actions, up € U, are
evaluated. For a given action uy, the next configura-
tion obtained by xg41 = f(zk,ur) generally might not
lie on a quantized configuration. However, linear in-
terpolation between neighboring quantized configura-
tions can be used to obtain the appropriate loss value
without restricting the motions to the grid. Suppose
for example, that for a one-dimensional configuration
space, Ly [i] and Ly ,[i+ 1] represent the loss values
for some configurations x; and z; 1. Suppose that the

S. M. LaValle

transition equation, f, yields some z that is between
z; and z;41. Let
Tit1 — T
a=H= (10)
Tit1 — T
Note that @ = 1 when z = z; and a = 0 when z =
Z;+1- The interpolated loss can be expressed as

Lia(@hi) m el il + (1 —a) L, [i + 1], (11)

In an n-dimensional configuration lspace, interpo-
lation can be performed between 2" neighbors. For
example, if C = R2, the interpolation can be computed
as
L1 (Tet1) »
oLy, fis]+ (1 = @)BLiy, [i + 1,1+

a(l = B)Liplivj+1+(1—a) (1= B)Lipfi+1,j+1]

(12)
in which «a,3 € [0,1] are coefficients that express the
normalized distance to the neighbors. Convergence
properties of the quantization and interpolation are dis-
cussed in [4, 5]. Interpolation represents an important
step that overcomes the problems of measuring Man-
hattan distance due to quantization.

The obstacle constraints must also be taken into ac-
count. The constraints can be directly evaluated each
time to determine whether each)1 lies in the free
space, or a bitmap representation of the configuration
space can be used for quick evaluations (an efficient al-
gorithm for building a bitmap representation of Cgyee
is given in [12]).

Note that L}, represents the cost of the optimal one-
stage strategy from each configuration zx. More gen-
erally, L}, represents the cost of the optimal (i + 1)-
stage strategy from each configuration zx_ ;. For a
motion planning problem, one is typically concerned
only with strategies that require a finite number of
stages before terminating in the goal region. For a
small, positive § the dynamic programming iterations
are terminated when |Li(zy) — Ly (2r41)| < 6 for all
values in the configuration space. This assumes that
the robot is capable of selecting actions that halt it
in the goal region. The resulting stabilized cost-to-go

Computation of Optimal Navigation Functions

function can be considered as a representation of the
optimal strategy. Note that no choice of K is necessary
because termination occurs when the loss values have
stabilized. Also, only the representation of Ly, is re-
tained while constructing Lj; earlier representations
can be discarded to save storage space.

4.2 The new approach

The approach outlined in Section 4.1 will numerically
determine the optimal motion strategy for a very broad
class of problems. It can furthermore be extended in a
variety of ways to handle complications such as stochas-
tic predictability uncertainty [18]. In spite of these
successes, its computational complexity usually limits
its practical applicability to problems that have two or
three degrees of freedom.

The following two aspects of the previous method
greatly contribute to the computational expense: 1)
The number of iterations over the configuration space
is equal to the number of stages in the longest (in terms
of time) optimal trajectory that reaches the goal; 2)
Each evaluation of L*(x) requires an interpolation be-
tween 2" neighbors if Cy,.. is n-dimensional. The new
approach obtains the optimal strategy in a single iter-
ation over the configuration space and uses only n + 1
neighbors for each interpolation. The first improve-
ment is made by styling the computation in a manner
that is similar to the execution of Dijkstra’s algorithm
for graphs. The second improvement is made by ap-
proximating the cost-to-go function by constructing a
simplicial complex on the configuration space.

Using a simplicial complex A set of control points,
P € Cfree, will be introduced to replace grid points from
the previous approach. For a set of control points,
D102, -+ s Pnt1, 16t [p1, P2, ..., Pni1] denote their con-
vex hull, which will be referred to as a simplex. In
two dimensions, a triangulation is obtained. For an n-
dimensional configuration space, a simplicial complex is
constructed [27]. Every d-dimensional simplex has d+1
faces, each of which are (d — 1)-dimensional simplexes.
Furthermore, for every pair, Sy, Sa2, of i-dimensional
simplexes in the simplicial complex, either S; NSy =0
or S; and Ss share an (i — 1)-dimensional face.

QU -

Figure 1: Simplezes are only constructed in the obstacle-

free portion of Cree.

The obstacle regions are avoided in the construction
of the simplicial complex, as shown in Figure 1. In
practice one might simply generate a simplex if all of
its corresponding control points lie in Cfrce. This ap-
proach might be efficient; however, to ensure correct-
ness of the results, one must determine whether the
entire convex hull of the control points lies in Cyree.
One way this can be accomplished is to use a collision
checking algorithm that provides a lower bound on the
distance from the point to the obstacle in the configu-
ration space.

Next, consider using the simplicial complex to rep-
resent a cost-to-go function. Suppose that the value
of L* is known for each of the control points. For an
n-dimensional configuration space, the value of L* at
a point z € Cyree can be estimated through interpola-
tion. Suppose z lies in the interior of an n-dimensional
simplex. Note that any point x in a simplex can be
uniquely expressed as a linear combination of the con-
trol points, {p1,...,Pn+1} as

n+1

=Y Bipi, (13)
=0

in which each §; is real-value such that 8; > 0 and
ETL”LOl B; = 1. The coefficients {81, 02,...,0n+1} are

1=l
actually the barycentric coordinates of x. These coor-

dinates can be used to provide a estimate of L* through
linear interpolation as

n+1

L*(x) = Y BiL*(pi). (14)
i=0

The next question that remains is how to choose
a simplicial complex. Generally, three factors should
guide the selection of a simplicial complex: 1) to yield
a nice representation of the navigation function, each
simplex should be as close to spherical in shape as pos-
sible, 2) for a given configuration, the problem of deter-
mining which simplex it belongs to should be efficient,
and 3) the computation of the barycentric coordinates
should be efficient. For the 2D case it is straightfor-
ward to define a simplicial complex by simply tiling the
plane with equilateral triangles; however, in higher di-
mensions, the computational performance will depend
greatly on the choice of simplexes that cover the con-
figuration space. Ideally, one would like to construct
a simplicial complex such that all d-dimensional sim-
plexes are regular polytopes; however, as shown in [7],
this is impossible, even in R3 (e.g., 2 cannot be tiled
with identical tetrahedra, each of which having all faces
be equilateral triangles).

We have recently shown that cubes or hypercubes
can be triangulated using barycentric subdivision to
yield a simplicial complex with very desirable proper-
ties: point location (which simplex does a given point
belong to?) and barycentric coordinate computation
can be performed in time O(n lgn), in which n is the di-
mension of the configuration space. The configuration
space is tiled with cubes, and each cube is triangulated
as shown in Figure 2 for the 2D and 3D cases. This
result will be useful for the implementation in higher-
dimensional configuration spaces, but at the present
time we have only implemented the algorithm for the
2D case, which is described in Section 5.

Algorithm details An overview of the algorithm is
given in Figure 3. The computation proceeds in a man-
ner similar to Dijkstra’s algorithm, except in our case,
the region in which L* is known increases incremen-
tally, as opposed to the costs on wvertices in a graph.

S. M. LaValle

(a) (b)

Figure 2: The cube can be triangulated using barycentric
subdivision to obtain a simplicial complex on which efficient
point location and barycentric coordinate computation are
possible.

Q+{}; Pr«alpeqd
For each p € Pre(G)\ G
Compute lub(p); INSERT(p,Q)
Until Q =0 do
Pmin < POP(Q)
For each p in Q N (Pre(R(Ps U pmin) \ R(Py)))
Recompute lub(p)
P < Py U{pmin}
For each p € Pre(R(Ps))\ Q
Compute lub(p)
INSERT(p,Q)

= © 00~ O T W N

= O

Figure 3: This algorithm computes the optimal feedback
motion strategy in a single pass over the configuration space.

For some loss functionals, the computation can be fur-
ther simplified. For example, in the case of a minimum-
time criterion, the computation can be organized as a
wavefront expansion. This is analogous to the simplifi-
cation of Dijkstra’s algorithm to wavefront propagation
in standard motion planning approaches.

The following notation is used in the algorithm de-
scription. For any control point p, let lub(p) denote the
lowest upper bound that can be assigned to the optimal
cost-to-go at p, given any computation that has been
performed. Let P; denote a set of control points for
which L*(z) is known. In other words, lub(p) = L*(p)
for all p € P;. For a set of control points, P, let
R(P) C Cyree denote the set of all points that lie in

Computation of Optimal Navigation Functions

a simplex for which all of its control points are con-
tained in P. In other words, R identifies a region over
which a cost could be computed through interpolation
of control points in P. Let Pre(C) denote the set of all
ZTr4+1 € Cgree such that there exists some u, € U with
Trpe1 = f(zg,ur) and xx € C. In other words, Pre(C)
gives the set of configurations from which the set C' is
reachable in a single stage. This is a familiar construc-
tion in motion planning under uncertainty [22, 16], and
the computation of Pre(C) might be straightforward
or extremely challenging, depending on the particular
motion model.

Initially, it is assumed that lub(p) = cc if p & G.
If p € G, then lub(p) = L*(p) = 0 (i.e., the optimal
cost-to-go from the goal is always zero). The objective
is to determine L*(p), for any control point p, that is
reachable from G. Once this occurs, Py will include
all control points (L*(p) = oo for unreachable control
points), and R(Py) will be the maximal subset, formed
from simplexes, on which the optimal cost-to-go can
be determined. If there does not exist enough points
initially such that 0 is obtained by interpolation over
an n-dimensional simplex, then the algorithm will fail.
This can occur, for instance, if the goal region is small
and the spacing between control points is too large.

Step 1 initializes @), which is a priority queue of con-
trol points that are sorted in ascending order according
to lub(p). Also, Py is assigned to contain all control
points that lie in G. Steps 2 and 3 initialize @) by
inserting all control points that are reachable from G
in a single stage, excluding points already in G. For
points in Pre(G), a finite value for lub(p) can be com-
puted by selecting the action uy € U that produces
the minimum loss. This computation can generally be
performed by discretizing the action space; however,
better techniques can be used in some particular cases.

Steps 5 to 11 are iterated until @) is empty. After
each iteration, L* is known for a new control point.
In Step 3, pmin is removed from @ (the control point
for which lub(p) is the smallest). It is known that
lub(pmin) = L*(pmin) because a single-stage trajec-
tory exists that brings pp, into R(Py) with less loss
than from any other control point in . Once L* is

known for a new control point, Py must be appropri-
ately expanded, which adds new simplexes over which
L* can be obtained through interpolation. Better up-
per bounds can now be computed for some of the con-
trol points in (). This update is performed by trying
the actions uy € U and evaluating the loss obtained
for configurations that lie in the new simplexes (i.e.,
if pimin was used in the interpolation). After the con-
trol points are updated, the next part is to add new
elements to @), which is performed in Steps 9-11.

The priority queue, @, is empty when there are no
new control points that can reach R(Pf) in a single
stage. This is a natural halting point for the algorithm.
The algorithm only stores the L* for all control points
in Py. The cost-to-go at any configuration in R(Py)
can be obtained by linear interpolation, which results
in a navigation function that can be used to guide the
robot into the goal.

5 Implementation

This section presents some results from an implemen-
tation of the algorithm in Figure 3 using GNU C++
and LEDA under Linux on a 200Mhz Pentium Pro PC.
The current implementation applies only to case of a
planar configuration space with a holonomic motion
model. Thus, many practical computational issues re-
main to be explored as the dimension of the config-
uration space is increased and different nonholonomic
systems are considered. For a small set of problems, it
has been observed that the new computation method
computes optimal navigation functions between 40 and
80 times faster than the method described in [18].

Three example problems are shown in Figures 4.a,
5.a, and 6.a. Figures 4.b, 5.b, and 6.b show level set
contours of the optimal navigation function that was
obtained using 80 x 80 control points. Figure 4.c shows
100 paths that were obtained by using the computed
navigation function for Problem 1 and starting from
random initial configurations. The table shown in Fig-
ure 7 shows computation times. A point robot is as-
sumed. The extremal values of each axis are 0 and 100.
When 40 x 40 control points were used, the robot was
allowed to move 3.75 units in each stage. The state

A

o

<

—~
o
a3
—~
=3
=~

Figure 4: Problem 1: a) The obstacles are shown in gray,
and the goal region is shown in black; b) level set con-
tours of the optimal navigation function for each integer,
{1,2,3,...}; ¢) 100 paths that were obtained by using the
computed navigation function from randomly chosen initial

positions.

transition equation, f, is defined such that the robot
is allowed to either move a fixed distance in any direc-
tion or remain stationary. When 80 x 80 control points
were used, the robot was allowed to move 1.875 units
in each stage. The action space was quantized into 32
and 360 orientations; the cost-to-go for each quantized
value is computed, to numerically evaluate (9).

For this particular two-dimensional problem, one
could evaluate (9) more efficiently, or even use methods
similar to those in [9, 25]. The purpose of these exper-
iments, however, is to estimate how the algorithm will
perform when it is given more challenging problems in
higher-dimensional configuration spaces. Therefore, no
attempt was made to exploit properties particular to
the 2D holonomic shortest-path problem.

S. M. LaValle

(a)

Figure 5: Problem 2: a) Input; b) level set contours.

' _il'
J_-(a) T 4

Figure 6: Problem 3: a) Input; b) level set contours.

6 Discussion

A new approach has been presented for computing op-
timal feedback motion strategies for holonomic or non-
holonomic planning problems. Instead of precomput-
ing a path, the solution takes the form of a navigation
function, as considered in [26]. Two improvements are
made over the previous approach to the problem of nu-
merically computing optimal cost-to-go functions: 1)
The solution can be obtained in a single iteration over
the configuration space; 2) the number of interpola-
tion steps have been reduced from 2" to n + 1. It
is important to note that once a navigation function
is computed, it can be quickly utilized during execu-
tion. Although great performance improvement of the
previous technique has been observed for a 2D con-
figuration space, it is important to test these ideas
on higher-dimensional spaces. As the dimension is in-

Computation of Optimal Navigation Functions

P Res Precmp | OldDP | NewDP | Fact
TlILI0T | (se0) | (se0) | (se0)
40 x 40,32 0.45 10.32 0.20 51.6

80 x 80,32 1.77 84.16 0.82 102.6

80 x 80, 360 1.77 822.93 8.45 97.4

40 x 40,32 0.61 8.03 0.18 44.6

W | = ==

40 x 40,32 1.37 12.57 0.21 59.8

Figure 7: Computational performance from a GNU C++
implementation on a 200Mhz Pentium Pro PC running
Linux. The columns denote: P = problem number, Res =
resolutions, Precmp = precomputation time, OldDP = com-
putation time for the original dynamic programming algo-
rithm, NewDP = computation time for the new algorithm,

Fact = factor of improvement in computation time.

creased, greater benefits of using the simplicial complex
as opposed to a grid are expected.

One aspect that deserves careful attention is the sen-
sitivity of the approach to the choices of resolutions. To
improve computational performance, it is tempting to
increase the spacing between control points. However,
this might result in a simplicial complex that does not
adequately capture the topological information in Cyee
(i-e., a path class might be lost). It is also important
to appropriately select At, which directly affects the
distance traveled during each stage. If At is too small,
the algorithm is likely to terminate prematurely be-
cause R(Py) will not be reachable. If At is too large,
goal overshoot might occur. Similar issues also exist re-
garding the quantization of the action space U during
the numerical evaluation of (9).

We are currently implementing the algorithm pre-
sented in Figure 3 for a three-dimensional configuration
space, and intend to perform experiments to determine
its performance and robustness. Two applications are
worth considering at the outset: 1) optimal planning
for car-like robots, and 2) optimal push planning for a
robot that pushes rigid bodies on a planar surface. Our
approach is expected to be particularly useful for appli-
cations that involve unpredictability, such as nonpre-
hensile manipulation [8]. For example, imagine push-
ing a box with a mobile robot that makes points con-
tact. A vision system can be used to monitor the posi-

tion of the box, and the motion of the robot should be
adjusted during execution to guide the box to the goal.
A navigation function would be ideal in this case be-
cause a feedback motion strategy is directly obtained,
as opposed to forcing the robot to follow a particular
trajectory.

In the longer term it will be interesting to attempt
generalizations of the algorithm. As argued in [19], one
powerful advantage of a unified mathematical frame-
work for motion planning problems is the relative ease
of obtaining generalizations. It is expected that this
will indeed be the case for the algorithm presented in
this paper. One possible generalization is to use heuris-
tic underestimates of the cost-to-go to design an algo-
rithm that is similar to the A* search generalization
of Dijkstra’s algorithm. The technique might also ap-
ply to problems that involve stochastic uncertainty in
predictability, which can dramatically improve compu-
tational performance for problems such as computing
optimal manipulation strategies under uncertainty [20],
or planning in a partially-predictable environment [21].

Acknowledgments

I thank Prashanth Konkimalla for his help with the
implementation. I also thank Tammy Verstraete for
making corrections to this manuscript.

References

[1] P. K. Agarwal, J.-C. Latombe, R. Motwani, and
P. Raghavan. Nonholonomic path planning for push-
ing a disk among obstacles. In IEEE Int. Conf. Robot.
& Autom., 1997.

[2] J. Barraquand, B. Langlois, and J. C. Latombe. Nu-
merical potential field techniques for robot path plan-
ning. IEEE Trans. Syst., Man, Cybern., 22(2):224—
241, 1992.

[3] J. Barraquand and J.-C. Latombe. Nonholonomic
multibody mobile robots: Controllability and motion
planning in the presence of obstacles. Algorithmica,
10:121-155, 1993.

[4] R. E. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

D. P. Bertsekas. Convergence in discretization proce-
dures in dynamic programming. IEEE Trans. Autom.
Control, 20(3):415-419, June 1975.

L. G. Bushnell, D. M. Tilbury, and S. S. Sastry. Steer-
ing three-input nonholonomic systems: the fire truck
example. Int. J. Robot. Res., 14(4):366-381, 1995.

H. S. M. Coxeter. Regular Polytopes. Dover Publica-
tions, New York, NY, 1973.

M. Erdmann. An exploration of nonpreheunsile two-
palm manipulation using two zebra robots. In J.-P.
Laumond and M. Overmars, editors, Algorithms for
Robotic Motion and Manipulation, pages 239-254. A
K Peters, Wellesley, MA, 1997.

J. Hershberger and S. Suri. Efficient computation of
Euclidean shortest paths in the plane. In Proc. 84th
Annual IEEE Sympos. Found. Comput. Sci., pages
508-517, 1995.

A. Isidori. Nonlinear Control Systems.
Verlag, Berlin, 1989.

Springer-

L. E. Kavraki. Random Networks in Configuration
Space for Fast Path Planning. PhD thesis, Stanford
University, 1994.

L. E. Kavraki. Computation of configuration-space
obstacles using the Fast Fourier Transform. IEEE
Trans. Robot. & Autom., 11(3):408-413, 1995.

R. E. Larson. A survey of dynamic programming com-
putational procedures. IEEE Trans. Autom. Control,
12(6):767—774, December 1967.

R. E. Larson and J. L. Casti. Principles of Dynamic
Programming, Part II. Dekker, New York, NY, 1982.

J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot
motion planning with uncertainty in control and sens-
ing. Artif. Intell., 52:1-47, 1991.

J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M.
Murray. A motion planner for nonholonomic mobile
robots. IEEE Trans. Robot. & Autom., 10(5):577-593,
October 1994.

S. M. LaValle. A Game-Theoretic Framework for
Robot Motion Planning. PhD thesis, University of Illi-
nois, Urbana, IL, July 1995.

[19]

(20]

(21]

[22]

23]

[25]

[26]

27]

[28]

[29]

S. M. LaValle

S. M. LaValle. Robot motion planning: A game-
theoretic foundation. In Proc. 2nd Int’l Workshop on
the Algorithmic Foundations of Robotics, July 1996.

S. M. LaValle and S. A. Hutchinson. An objective-
based framework for motion planning under sensing
and control uncertainties. International Journal of
Robotics Research, 17(1):19-42, January 1998.

S. M. LaValle and R. Sharma. On motion planning in
changing, partially-predictable environments. Inter-
national Journal of Robotics Research, 16(6):775-805,
December 1997.

T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Au-
tomatic systhesis of fine-motion strategies for robots.
Int. J. Robot. Res., 3(1):3-24, 1984.

K. M. Lynch and M. T. Mason. Stable pushing: Me-
chanics, controllability, and planning. In Algorithmic
Foundations of Robotics. A. K. Peters, Boston, 1995.

K. M. Lynch and M. T. Mason. Stable pushing: Me-
chanics, controllability, and planning. Int. J. Robot.
Res., 15(6):533-556, 1996.

J. S. B. Mitchell. Shortest paths among obstacles in
the plane. Int. J. Comput. Geom. & Appl., 6(3):309—
332, 1996.

E. Rimon and D. E. Koditschek. Exact robot nav-
igation using artificial potential fields. IEEE Trans.
Robot. & Autom., 8(5):501-518, October 1992.

J. J. Rotman. Introduction to Algebraic Topology.
Springer-Verlag, Berlin, 1988.

J. A. Sethian. Level set methods : Evolving inter-
faces in geometry, fluid mechanics, computer vision,
and materials science. Cambridge University Press,
1996.

P. Svestka and M. H. Overmars. Coordinated motion
planning for multiple car-like robots using probabilis-
tic roadmaps. In IEEE Int. Conf. Robot. & Autom.,
pages 1631-1636, 1995.

