
Computing Smooth Feedback Plans Over
Cylindrical Algebraic Decompositions

Stephen R. Lindemann and Steven M. LaValle
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

{slindema, lavalle}@uiuc.edu

Abstract— In this paper, we construct smooth feedback plans
over cylindrical algebraic decompositions. Given a cylindrical
algebraic decomposition onRn, a goal statexg, and a connectivity
graph of cells reachable from the goal cell, we construct a vector
field that is smooth everywhere except on a set of measure zero
and the integral curves of which are smooth (i.e.,C∞) and arrive
at a neighborhood of the goal state in finite time. We call a
vector field with these properties a smooth feedback plan. The
smoothness of the integral curves guarantees that they can be
followed by a system with finite acceleration inputs:ẍ = u. We
accomplish this by defining vector fields for each cylindrical cell
and face and smoothly interpolating between them. Schwartz and
Sharir showed that cylindrical algebraic decompositions can be
used to solve the generalized piano movers’ problem, in which
multiple (possibly linked) robots described as semi-algebraic sets
must travel from their initial to goal configurations without
intersecting each other or a set of semi-algebraic obstacles. Since
we build a vector field over the decomposition, this implies that
we can obtain smooth feedback plans for the generalized piano
movers’ problem.

I. I NTRODUCTION

Feedback motion planning is a fundamental problem in
control and robotics. If the state space is a smooth manifold
X ⊆ Rn, and the system satisfies the state transitionẋ =
f(x, u), a feedback strategy(also called acontrol law) is a map
π : X → U , in whichU is the input space. A feedback strategy
can also be seen as a vector field onX, since the choice ofu at
any pointx ∈ X determines the tangent vector of the system
trajectory at that point. For a feedback strategy to be useful,
the behavior of the system under the strategy must have some
desirable properties. For example, stability is an important
consideration; the control law should prevent the system from
being unbounded as time goes to infinity. Another important
property is convergence to a given goal point or region. For this
to be satisfied, the system should be guaranteed to converge to
the goal region under application of the feedback control. In
this paper, we consider feedback motion planning on the cells
of a cylindrical algebraic decomposition of a bounded subset
of Rn. The system we consider is of the form̈x = u. If our
cylindrical algebraic decomposition arises from a generalized
piano movers’ problem as in Schwartz and Sharir [1], with
some cells of the decomposition removed because of the
configuration space obstacles, then the feedback plan (vector
field) we construct is guaranteed to take any initial state to
the goal state while avoiding the obstacle cells, and to do so

xg

Fig. 1. The resulting cylindrical algebraic decomposition and several flows
of a smooth feedback plan on the cell decomposition.

smoothly. Hence, our method computes a smooth feedback
plan for the generalized piano movers’ problem.

Traditional feedback control is well studied [2], but can-
not be applied in many cases due to nonconvex obstacles
in the environment. This is difficult enough when we are
considering nonconvex obstacles in the plane; it is far more
challenging when the obstacles are the semi-algebraic setsin
a high-dimensional configuration space corresponding to the
generalized piano movers’ problem. In the algorithmic motion
planning community, the solution to this has been to compute
open loop trajectories linking initial and goal configurations
but ignoring feedback considerations. This work is very impor-
tant because it provides a way to compute trajectories for very
complex, high-dimensional problems; however, it is important
to think not only in terms not only of open loop trajectories,
but also about feedback control.

Some have tried to make feedback more central through

the construction of potential fields that have no local minima
other than the goal state [3], [4]. If such a potential field can
be found, the gradient of the field can be used as the velocity
command for the robot. However, there are a number of
difficulties associated with computing such potential fields. We
will bypass these difficulties by directly constructing a vector
field with the desired properties, rather than constructinga real
valued function and using the gradient as the vector field. In
our case, we take a cylindrical algebraic decomposition of the
configuration space (which is known to be able to solve the
generalized piano movers’ problem [1]) and construct vector
fields for each of the cells in the decomposition. We do this
by inductively defining vector fields on cells of dimension
one and then iteratively lifting them into more dimensions,
in the same way as the decomposition itself is constructed.
Different locally defined vector fields are smoothly combined
using bump functions. The result is a globally defined vector
field the integral curves of which are smooth and converge to
a goal state. An illustration of a vector field produced by our
algorithm is given in Figure 1. Our vector fields can be used
directly for kinematic systems, or they can be used to develop
dynamic control policies. For example, if the computed vector
field is V (x), a control policy

u = K(V (x) − ẋ) + V̇ (x)

for some feedback gainK can be used [5]. Under certain
conditions, it can be shown that the system will converge to
the integral curves of the constructed vector field [5], [6].

In the following section, we will review related work,
focusing on how the feedback motion problem has been
addressed within the robotics community and describing in
detail the method of upon which ours is based. We will
then briefly describe cylindrical algebraic decomposition, and
our algorithm in detail. We will demonstrate that the integral
curves of our vector field converge to the goal state.

II. FEEDBACK MOTION PLANNING

A. Background

The problem of finding a global motion plan in com-
plex environments is difficult. Motion planning problems in
robotics typically involve non-convex constraints resulting
from obstacles in the environment. This presents a significant
problem for traditional feedback control methods. One solution
might be to use state space sampling along with dynamic
programming to achieve not only feedback, but approximately
optimal trajectories [7]–[9]. This may be feasible for low-
dimensional spaces, but both the time- and space-complexity is
exponential in the dimension of the state space, assuming that
the sampling resolution remains fixed. The difficulty of feed-
back control for these problems motivates the development of
open loop motion planning algorithms, which can at least find
feasible paths through obstacle-cluttered environments.Such
algorithms have been extensively studied [10], [11]. Many
motion planning algorithms have been developed for kinematic
systems; several, such as RRTs [12] and PDST-EXPLORE
[13] are specifically designed for systems with dynamics.

Kinematic motion planning algorithms find paths which need
post-processing (e.g., time-scaling [14], [15], steering[16],
[17], or other transformations [18], [19]) to be transformed
into trajectories for dynamical systems. In contrast, RRTsand
similar planners find such trajectories directly. In eithercase,
an open loop trajectory for the system is found. This trajectory
can then be tracked using feedback.

This approach has several disadvantages, however. First,
paths generated by motion planning algorithms often appear
to be of poor quality, having unnecessary turns and bends in
them. This may result in them being difficult to follow for
a dynamical system. Second, this approach does not produce
a global feedback plan, but only a local feedback plan in a
neighborhood of the nominal trajectory. It would be better to
solve the feedback problem once for the entire space.

Another approach, made plausible through tremendous ad-
vances in computational power, is to use motion planning
algorithms themselves as the feedback mechanism. In such
a model, any time the system deviated from the prescribed
trajectory, the trajectory would be re-planned (probably from
scratch) based on the new state of the system. This approach
is extremely problematic as well. First, it has a very high
computational cost, and may not be suitable for real-time
applications. Second, this approach is not even guaranteedto
bring the system to the goal state, although in practice it might
be expected to.

These approaches, which add feedback almost as an af-
terthought to open loop trajectories, have significant problems,
as we have seen. Consequently, there have been some attempts
within the robotics community to incorporate feedback more
directly. For example, the sampling-based neighborhood graph
(SNG) covers the free space with balls, each of which is
equipped with a local navigation function which is guaranteed
to convey the robot into a ball nearer to the goal state.
Other approaches to feedback motion planning in the presence
of obstacles are often based on potential fields. Khatib [3]
developed a method which utilized a potential field over the
operational space to guide a manipulator or mobile robot to
the goal. His approach suffers from local minima, however,
as do many potential field methods. Waydo and Murray give
a stream function method for navigation in two-dimensional
environments [20]. A highly influential potential field method
is that of Rimon and Koditschek [4], who show how to
developnavigation functions(potential functions with a unique
minimum at the goal and meeting certain other criteria) using
potential functions in a generalized sphere world. Rimon and
Koditschek have presented the most general feedback planning
technique up to now; their method applies to any problem
whose configuration space is topologically equivalent to a
generalized sphere world. Our method is more general in
that it applies to any configuration space with a well-defined
cylindrical algebraic decomposition.

Finally, work by Conneret al. [6] and Lindemann and
LaValle [21] compute feedback plans over cell decomposi-
tions, as do we. Conneret al. consider an cell complex
environment ind-dimensional Euclidean space. They then

2

impose a potential field over each individual cell, taking as
the field the pullback of a potential function on a disk, which
has a closed form solution. They require that the gradients of
the potential fields be perpendicular to the cell boundaries, so
that adjoining potential fields can be easily pieced together.
Putting the individual “component control policies” together
guarantees that the global control policy brings the robot
to the goal. In addition to specifying a control policy for
kinematic systems, they develop control policies for systems
with dynamical constraints. Similarly, Lindemann and LaValle
take a cell complex environment and define vector fields over
the individual cells, which can also be see as component
control policies. Since this work is the primary inspiration for
the current work, we describe it in detail below. Both [6] and
[21] can be seen in the context of the sequential composition
of funnels approach [22], in which a collection of controllers
is developed, each of which converges to a goal set which
is either the actual goal state or in the domain of another
controller. Following a sequence of these controllers willcause
the system to arrive at the goal state. This idea was further
developed in [5], [23].

B. Smooth Feedback Plans on Convex Polytopes

Lindemann and LaValle introduced the method upon which
this work is based [21]. We will describe their work in depth,
especially the parts in which our method parallels theirs. They
address the problem of smooth feedback motion planning
for a point robot whose environment is ad-dimensional cell
complex, each cell being a boundedd-dimensional convex
polytope. Such a cell complex might be generated from a
convex decomposition of ad-dimensional polygonal environ-
ment. There is a goal statexg, and consequently a goal cellCg

containingxg. They use the connectivity of the convex cells
to construct a graph and use a graph search algorithm (such
as Dijkstra’s algorithm or breadth first search) to determine a
path from each cell toCg. Then, each cell other thanCg has a
“successor” cell which is the next cell on the path to the goal
cell.

Once the cell graph has been computed, they construct a
vector field on each cell which has the following properties:

1) The vector field is smooth except for a set of measure
zero and all integral curves of the vector field are
smooth.

2) All integral curves leave the cell via the exit face,
entering the designated successor of that cell.

3) Smoothness of the integral curves is preserved when cell
boundaries are crossed.

These properties guarantee that the vector field can be used
for smooth feedback motion planning for the systemẍ = u.

An important element of the method is the use of the fact
that smooth feedback planss can be constructed using two
types of simple vector fields, one perd-dimensional cell and
one per(d−1)-dimensional face, blended together using bump
functions. Since bump functions smoothly interpolate between
two functions (more generally, partitions of unity are capable
of smoothly blending arbitrarily many functions together),

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

b(
t)

Fig. 2. A bump function. If we letλ(t) = (1/t)e−1/t, then b(t) = 1 −

λ(t)/(λ(t) + λ(1 − t)).

the system can transition from following one component
vector field to another without any loss of smoothness. Bump
functions are defined as follows:

Definition 1 Let X be a smooth manifold, and letK be a
closed set andU an open set,K ⊂ U ⊆ X. A bump function
over U is a smooth, real valued functionρ : X → [0, 1] such
that:

1) ρ has support contained inU .
2) ρ(x) = 1 for everyx ∈ K.

Bump functions are in general difficult to find, even though
their existance is guaranteed. However, they are simple to
compute on the real line. Figure 2 illustrates a bump function
which smoothly transitions from 1 to 0 on the unit interval.

In order for the approach to work, one more piece must be
put in place. Within each cell, the vector fields must be blended
in such a way so that on each face, the resulting vector field is
identically equal to the face vector field. In the interior ofeach
cell, all of the face vector fields must be smoothly interpolated
between. They use the cell vector field (which they call the
attractor vector field) as an intermediary between the different
face vector fields, interpolating between them. They do this
using the interior generalized Voronoi diagram (GVD) of the
cell. The GVD partitions the cell into regions corresponding
to each face; in each region, bump functions are used to blend
between the face vector field and the attractor vector field.
On the GVD itself, the vector field is identically equal to the
attractor vector field, guaranteeing that all face vector fields are
smoothly blended together in the interior of the cell. In order
to use the bump function to blend between the face vector field
and the attractor vector field, they have to carefully construct
the parameter of the bump function in such a way that it will
be equal to one on any of the faces of the GVD and zero
on the face of the cell. They use the product of all fractional
distances to the faces of the GVD to do this. Formally, for

3

Fig. 3. A smooth feedback plan generated using the algorithm of [21] in a
two-dimensional environment.

any pointp it is defined as

t(p) = 1 −

n∏

i=1

d(p, fi)

d(p, fi) + d(p, fx)
, (1)

in which {fi}
n
1 are the faces of the GVD andd(p, fi) is the

distance fromp to facefi. Note the similarity to the analytic
switch used in navigation function and potential field methods.
This function is smooth (except at the vertices of the cell),and
has the desired property of being identically equal to one on
the exit face and zero on all other boundaries.

Since the bump function smoothly blends the face and
attractor vector fields together, a vector field is obtained which
is smooth over the entire cell. With small modifications, the
above approach can be used in the goal cell as well. They
show that piecing the individual cells together results in a
vector field which is smooth over the entire free space. They
also normalize the vector field at every point, so the global
vector fieldV (p) is defined asV (p) = norm(b(p)Vf (p)+(1−
b(p))Va(p)), in whichVf is the face vector field for that point,
Va the attractor vector field,b the bump function, andnorm
is the normalization function. An example of the trajectories
produced by the method is given in Figure 3.

III. C YLINDRICAL ALGEBRAIC DECOMPOSITION

Cylindrical algebraic decomposition was used to solve the
piano movers’ problem first by Schwartz and Sharir [1]. They
used the Collins decomposition [24] to partition the configura-
tion space into free and obstacle cells and demonstrated how
to find a path from a point in one free cell to a point in any
other connected free cell. Cylindrical algebraic decomposition
(abbreviated CAD) is extremely powerful; in fact, it is capable
of solving the first-order theory of the reals [25]. Given this, it
is not surprising that it can solve the generalized piano movers’
problem as well.

The input to the CAD algorithm is set of polynomials. The
polynomials are taken from the setQ[x1, . . . , xn], the polyno-
mials over the field of rational numbersQ. The algorithm takes
this set and computes a decomposition such that each cell is
semi-algebraic and sign-invariant under the given polynomials.
Each cell, then, is formed by the intersection and union of a

finite number of these polynomials. There are two main phases
to the CAD algorithm. First, the polynomials are iteratively
projected downward, one dimension at a time, until a single
dimension is reached. After reaching a single dimension, the
real line is partitioned using the critical points of the projected
polynomials. Then, each segment in the partition is lifted back
up into R2, becoming cylinders which are partitioned based
on the critical points of the now two-dimensional polynomials.
This is repeated, each time lifting up and partitioning the
resulting cylinders, untilRn is reached. At that point, a sign-
invariant partition ofRn has been obtained. Figure 7 illustrates
this. More details can be found in [11], [25], [26].

It is helpful to formally define the structure of a cell pro-
duced by the cylindrical algebraic decomposition algorithm.
The definition is inductive:

Definition 2

1) A cylindrical algebraic cellC1 in dimension one is either
an interval (a, b) or a point a.

2) A cell Cn in dimensionn has one of the two forms: it is
either the set of pairs{(x, y) : x ∈ Cn−1, f(x) < y <
g(x)} or the set of pairs{(x, y) : x ∈ Cn−1, y = f(x)},
in whichf andg are the(n−1)-dimensional projections
of the original polynomials.

IV. SMOOTH FEEDBACK PLANS ON CYLINDRICAL CELLS

To construct a smooth feedback plan on the entire cell
decomposition, we construct smooth plans on each individual
cell and then guarantee that smoothness is preserved across
cell boundaries. We assume that the input to our algorithm
is the entire cylindrical algebraic decomposition (i.e., the
n-dimensional sign-invariant cells and their corresponding
bounding polynomials), as well as a connectivity graph cor-
responding to the connectivity of then-dimensional cells in
the decomposition. If the goal cell is denoted asCg, then we
can search this graph to find a cell path from any other cell
to the goal cell. Defining the successor of a cellC as the next
cell on the path toCg from C, we can construct a directed
acyclic graph that describes the cell paths from every cell,
each of which ends at the goal cell. For any cellC, the task
is to construct a vector field such that all integral curves in
C are smooth inC and exit into the successor cell ofC,
and to ensure that if any flows enterC from other cells, their
smoothness is preserved (i.e., smoothness must be preserved
along all integral curves).

In this section, we will describe our method for constructing
the vector field and prove that the integral curves associated
with it are smooth and converge to the goal state. We described
in Section III how cylindrical algebraic decompositions can be
generated by projecting the algebraic surfaces into progres-
sively lower dimensions until only one dimension remains.
At that point, the first cylinder cross-sections are given by
the intervals; then, the surfaces are lifted up into successively
higher dimensions, being divided into cylinders of free or
occupied cells each time. Our algorithm proceeds analogously,

4

beginning with the one-dimensional case, designing appropri-
ate vector fields and then lifting them into higher dimensions.

Before continuing, we need to clarify the notation we will
be using. We will discuss our algorithm in terms of ann-
dimensional cellCn, and its successorSn. We also consider
the cross sections of the two cells, which are denoted as
Cn−1 and Sn−1. The cross sections are taken perpendicular
to the most recently lifted dimension (informally denoted the
vertical dimension). The(n−1)-dimensional face between the
two cells will be denotedFn−1 and its (n − 2)-dimensional
projection asFn−2. Note thatFn−2 is the intersection of the
closures ofCn−1 and Sn−1. Also, we have upper and lower
bounding polynomials forCn andSn, which we will call gC ,
fC , gS , and fS , respectively. Note that we assume thatCn

and Sn are in neighboring cylinders; if they are in the same
cylinder, then the problem becomes very easy. We discuss this
case later.

If general position assumptions are not made, then the
connectivity of the cells of neighboring cylinders becomes
very difficult to characterize; very little can be said aboutthe
behavior of the upper and lower bounding polynomials of the
two cells. As in the seminal work of Schwartz and Sharir [1],
we make the assumption that the polynomials are in general
position. The connectivity of neighboring cells becomes much
easier to analyze. Consider the cellsCk−1 and Sk−1. Now,
consider two cellsCk andSk in the cylinders formed by lifting
Ck−1 and Sk−1 into Rk. If Ck and Sk are adjacent, then
general position requires that they share either their upper or
lower bounding polynomial, or both. If they do not share either
bounding polynomial, they will not be adjacent. Furthermore,
if only a single bounding polynomial is shared, then when
Ck and Sk are lifted in higher dimensions, all adjacent cells
will share both bounding polynomials. This means that two
adjacent cellsCn and Sn in Rn share either all bounding
polynomials in all dimensions, or all but one. This greatly
simplifies the construction of the desired vector field. See
Figure 4 for an illustration of adjacent cells not sharing a
bounding polynomial.

One final set of definitions is necessary before proceeding.
First, for any pointp = (x, y) ∈ Cn, define the relative height
function hr : Cn → R as hr(p) = (y − fC(x))/gC(x) −
fC(x)). Next, define a projection functionπ : Cn → Fn−1.
For the sake of clarity, we will not give a rigorous definition
for this projection, but letπ take a point inCn to the point in
Fn−1 which preserves the relative heights in all dimensions,
except the dimension being projected out. This is a smooth
mapping.

We will construct ann-dimensional vector field using two
types of(n − 1)-dimensional vector fields defined onCn−1.
The first will be one which flows out of the appropriate(n−2)-
dimensional faceFn−2, and the second is a field which is
inward pointing on the entire(n − 2)-dimensional boundary
of Cn−1. We will also use “vertical” vector fields; i.e., positive
and negative axis aligned vector fields in the lifted dimension.
We will begin by constructing vector fields in one dimesion,
and then proceed to the inductive step ton dimensions. As

fC

hS

gC

Fig. 4. A face separating two cells from adjacent cylinders.The functions
fC andgC are the bounding polynomials for one cell, andhS is eitherfS

or gS , depending on whether the successorS is the upper cell or the bottom
cell.

Fig. 5. The two types of vector fields on an interval. Above, aninward
pointing field needing smoothing using a blending vector field; below, a
smooth outward pointing vector field.

in the previous work described in Section II, these vector
fields will utilize face vector fields and blending vector fields
(referred to as attractor vector fields in [21]). We will also
need to define a pseudo-distance function which we will use
in construction the parameter of the bump function. For an
n-dimensional pointp, we will use the notationdn(p) for the
distance function.

In one dimension, the construction is obvious, and is illus-
trated in Figure 5. For the inward pointing field, each endpoint
has an associated inward pointing vector field; these two vector
fields are interpolated using a blending vector field, which
we leave unspecified for the moment. The distance function
is the obvious Euclidean distance. If the cellC1 (i.e., line
segment) has endpointse1 and e2, we can formally define
d1(p) = min(d(p, e1), d(p, e2)), in which d is the standard
Euclidean metric. For the outward pointing field, we do not
need a blending field; the vector field always points in the
same direction.

Now we proceed to the inductive step. Assuming we have

5

a smooth vector field for the(n − 1)-dimensional cellCn−1,
we need to construct an appropriate vector field on the lifted
n-dimensional cell. Recall the structure of the cell as given
in Section III; each pointp in the cell Cn is a pair (x, y),
in which x is in the (n − 1)-dimensional cellCn−1 and
fC(x) < y < gC(x). To smoothly interpolate between the
vertical vector field and an(n − 1)-dimensional vector field,
we need a distance function onCn−1 that is smooth. Assume
we have a smooth distance function for the cellCn−2. Then
we can define

tn−1(p) = 1 −
dnew(p)

dnew(p) + dn−2(pn−2)
,

in which dnew = min(|g(x) − y|, |f(x) − y|), g and f the
upper and lower bounding polynomials inCn−1, and pn−2

the projection of the pointp into Cn−2. Then define

dn−1(p) = b(tn−1(p))dn−2(pn−2) + (1− b(tn−1(p))dnew(p),

in which b is the bump function seen in Figure 2. This function
has the desired smoothness properties and can be used in the
parameter of the blending bump function in the cellCn.

Our central approach is to decouple then-dimensional prob-
lem into two subproblems: first, a one-dimensional problem in
the new lifted dimension; and second, an(n− 1)-dimensional
problem which has already been solved by the lower dimen-
sional constructions. We make the following definition:

Definition 3 The exit window of cellCn exiting via faceFn−1

is the set of points:

1) {x ∈ Cn : hr(gS(τ(x))) < hr(x)}, if fS(y) = fC(y)
and gS(y) < gC(y) for all y ∈ Fn−1.

2) {x ∈ Cn : hr(x) < hr(gS(τ(x)))}, if gS(y) = gC(y)
and fS(y) > fC(y) for all y ∈ Fn−1.

3) {x ∈ Cn}, otherwise.

In the definition, the first case corresponds toSn having the
same lower bounding polynomial asCn but an upper bounding
polynomial which is lower, and the second case corresponds
to Sn having the same upper bounding polynomial but a lower
bounding polynomial which is greater. Recall that at most one
bounding polynomial can be different. In the third case, the
entire cellCn is the exit window. Intuitively, the exit window
consists of all points who have a relative height between those
of the upper and lower bounding polynomials through which
they must pass.

The upper and lower boundaries of this exit window are
obvious, and these boundaries can be used to logically partition
the cellCn into at most two slices: denote the exit window as
Cexit and the other asChold, if it exists. In order to define the
vector field on each of these cells, we need to define vector
fields for the upper and lower faces, the cross-section, and the
blending vector field. InChold, the cross-section vector field
must be inward pointing on the entire cross-section boundary;
in the inductive step, we assumed that we had one of these
available (call itVin). Since we know that forCexit, following
the lower dimensional exit vector field will lead to a proper cell

fC

hS

gC

������
����	�
��
	��

Chold

Cexit

Fig. 6. The component vector fields for a three dimensional cell. The vertical
face separatingC andS is on the left, and we lethS = fS . For the lower
part of C, the cross-section vector field is inward pointing; on the upper, it
exits through the appropriate face.

exit, we define the cross-section vector field in that case to be
Vexit. The vector fields for the upper and lower boundaries of
the cells are simple, being either upward pointing or downward
pointing, as appropriate. Finally, the blending vector field is
chosen to make sure that the flows continue to the desired exit
region. Within each cell, blend the component vector fields
together using bump functions, the parameter of the bump
functions being constructed in the same as in [21], which was
described in Section II. It is fairly obvious that the upper and
lower cells prevent the integral curves from leaving the cell
except to enterCexit, and that all flows inCexit leave through
the exit face as desired. The orthogonality of the vertical vector
fields and the(n − 1)-dimensional vector fields makes this
relatively easy to show, although we will not give all the details
here.

At this point, we have done most of the hard work to prove
our inductive hypothesis. We have constructed a vector field
using the vector field forCn−1 and the new vertical vector
fields, which will guarantee that all flows inCn leave from the
appropriate exit faceFn−1. We have also recursively defined
the pseudo-distance function used in the parameter of the
bump function. Only two things remain. First, we need to be
able to have vector field that leaves out of the top or bottom of
the cell into another cell in the same cylinder. This is trivial;
use upward pointing vector fields on both the top and bottom
faces and an inward pointing field onCn−1. The rest of the
construction is identical. Finally, we also need to be able to
constructan inward pointing vector field onCn. This too is
trivial; use Vdown on the top face,Vup on the bottom face,
and the inward pointing field onCn−1. Note that the integral
curves crossing cell boundaries will remain smooth; this is
because the vector field is always axis aligned on the cell
boundaries, so adjacent vector fields match perfectly.

All that remains is to show how to create a vector field for
the goal cell, which instead of exiting through an exit face,
should converge to a point. This is fairly simple, being just
a variation on the inward pointing cell just described. We do

6

not describe it in full, but it is simple to construct a vector
field in one dimension that converges to a point on the interval.
This can be extended inductively by causing the vertical vector
fields to converge to the desired coordinate together with the
lower dimensional vector field.

We have shown how to construct a vector field over the en-
tire cylindrical algebraic decomposition so that all the integral
curves are smooth and converge to the goal state. This is a
smooth feedback plan. Consequently, a trajectory beginning
anywhere in the configuration space will be smooth and will
reach an arbitrary neighborhood of the goal state in finite time.
We summarize the result:

Theorem 1 For a given cylindrical algebraic decomposition,
goal statexg, and and a connectivity graph of cells reachable
from the goal cell, we have constructed a vector fieldV such
that:

1) it is smooth everywhere except on a set of measure zero;
2) the integral curves are smooth; and
3) the integral curves arrive at a neighborhood of the goal

state in finite time.

Therefore, we have obtained a smooth feedback plan on the
decomposition.

One remaining question is that of the complexity of the
algorithm. Our method is very efficient with respect to the
input. Specifically, if the input is taken to be the complete
cylindrical algebraic decomposition, including the cellsof
every dimension from 1 ton as well as a connectivity graph,
then our method requires precomputation timeO(n) in the
size of the input (it needs only to precompute the graph for
the cell path, which can be done using breadth-first search
in linear time). A trajectory can be initialized using naive
point location in linear time; this bound can be improved in
certain cases. The vector field can be computed at any given
point in a known cell in time linear in the complexity of the
cell itself. This justifies our earlier claim that we essentially
obtain “feedback for free” once the cylindrical algebraic
decomposition has been computed. However, the number of
cells in the decomposition can be doubly exponential in the
dimension of the configuration space, so these results do not
have practical significance.

V. CONCLUSIONS

In conclusion, we have introduced an algorithm for con-
structing a vector field on the cells of a cylindrical algebraic
decomposition. Since CAD algorithms solve very general
motion planning problems (virtually any problem with a semi-
algebraic robot and semi-algebraic obstacles, in fact) [1], [11],
this implies that we can provide smooth feedback plans for
these problems as well. To the authors’ knowledge, this is the
first construction of smooth feedback plans with this level of
generality. It is also of interest that vector fields with smooth
integral curves can be constructed with relatively little trouble
and in an intuitive way.

Due to the complexity of cylindrical algebraic decompo-
sitions, it is highly unlikely that this method will be imple-
mented and used in its full generality. However, it has more
than purely theoretical interest. It may be reasonable to apply
to feedback planning for the rod [27] or for polygonal robots
translating and rotating in the plane [28]. Additionally, these
ideas can be applied to other specialized cell decompositions,
or used in conjunction with a precomputed path to provide
feedback in a neighborhood of the path. In the future, we plan
to explore these avenues of research.

REFERENCES

[1] J. T. Schwartz and M. Sharir, “On the piano movers’ problem:II. General
techniques for computing topological properties of algebraic manifolds,”
Communications on Pure and Applied Mathematics, vol. 36, pp. 345–
398, 1983.

[2] C.-T. Chen,Linear System Theory and Design. New York, NY: Holt,
Rinehart, and Winston, 1984.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[4] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential fields,”IEEE Trans. Robot. & Autom., vol. 8, no. 5, pp. 501–
518, Oct. 1992.

[5] A. A. Rizzi, “Hybrid control as a method for robot motion program-
ming,” in IEEE Int. Conf. Robot. & Autom., 1998, pp. 832–837.

[6] D. C. Conner, A. A. Rizzi, and H. Choset, “Composition of local
potential functions for global robot control and navigation,” in IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems, 2003, pp. 3546–3551.

[7] D. Bertsekas,Dynamic Programming and Optimal Control: Volume I.
Belmont, MA, USA: Athena Scientific, 2000.

[8] S. M. LaValle and P. Konkimalla, “Algorithms for computing numerical
optimal feedback motion strategies,”International Journal of Robotics
Research, vol. 20, no. 9, pp. 729–752, Sept. 2001.

[9] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1528–1538, Sept. 1995.

[10] J.-C. Latombe,Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[11] S. M. LaValle,Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), to be published in 2006.

[12] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” inAlgorithmic and Computational Robotics:
New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds. Welles-
ley, MA: A K Peters, 2001, pp. 293–308.

[13] A. M. Ladd and L. E. Kavraki, “Fast exploration for robots with
dynamics,” inProc. Workshop on Algorithmic Foundation of Robotics,
2004, pp. 313–328.

[14] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimalcontrol of
robotic manipulators along specified paths,”Int. J. Robot. Res., vol. 4,
no. 3, pp. 3–17, 1985.

[15] K. G. Shin and N. D. McKay, “Minimum-time control of robot manip-
ulators with geometric path constraints,”IEEE Trans. Autom. Control,
vol. 30, no. 6, pp. 531–541, 1985.

[16] F. Lamiraux and J.-P. Laumond, “Flatness and small-time controllability
of multibody mobile robots: Applications to motion planning,”IEEE
Transactions on Automatic Control, vol. 45, no. 10, pp. 1878–1881,
Apr. 2000.

[17] R. M. Murray and S. Sastry, “Nonholonomic motion planning: Steering
using sinusoids,”Trans. Automatic Control, vol. 38, no. 5, pp. 700–716,
1993.

[18] J. P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholo-
nomic motion planning for mobile robots,” inRobot Motion Plannning
and Control, J.-P. Laumond, Ed. Berlin: Springer-Verlag, 1998, pp.
1–53.

[19] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Multilevel
path planning for nonholonomic robots using semiholonomic subsys-
tems,” Int. J. Robot. Res., vol. 17, pp. 840–857, 1998.

[20] S. Waydo and R. M. Murray, “Vehicle motion planning usingstream
functions,” in IEEE Int. Conf. Robot. & Autom., 2003, pp. 2484–2491.

[21] S. R. Lindemann and S. M. LaValle, “Smoothly blending vector fields
for global robot navigation,” inProc. IEEE Conference on Decision and
Control, 2005, pp. 3553–3559.

7

[22] T. Lozano-Ṕerez, M. T. Mason, and R. H. Taylor, “Automatic systhesis
of fine-motion strategies for robots,”Int. J. Robot. Res., vol. 3, no. 1,
pp. 3–24, 1984.

[23] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors,”Int. J. Robot. Res.,
vol. 18, no. 6, pp. 534–555, 1999.

[24] G. E. Collins,Lecture Notes in Computer Science. Berlin: Springer-
Verlag, 1975.

[25] B. Mishra, “Computational real algebraic geometry,” inDiscrete and
Computational Geometry, J. E. Goodman and J. O’Rourke, Eds. New
York: CRC Press, 1997, pp. 537–556.

[26] S. Basu, R. Pollack, and M.-F. Roy,Algorithms in Real Algebraic
Geometry. Berlin: Springer-Verlag, 2003.

[27] J. Bãnon, “Implementation and extension of the ladder algorithm,” in
IEEE Int. Conf. Robot. & Autom., 1990, pp. 1548–1553.

[28] F. Avnaim, J. D. Boissonat, and B. Faverjon, “A practicalexact planning
algorithm for polygonal objects amidst polygonal obstacles,” in IEEE
Int. Conf. Robot. & Autom., 1988, pp. 1656–1660.

��������������	�
���
�����
������

�
��	��������	���	�
���

Fig. 7. The polynomials corresponding to the obstacles from Figure 1, and
the steps of the CAD algorithm.

8

