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Abstract—In this paper, we construct smooth feedback plans
over cylindrical algebraic decompositions. Given a cylindrical
algebraic decomposition oriR", a goal stater,, and a connectivity
graph of cells reachable from the goal cell, we construct a vector
field that is smooth everywhere except on a set of measure zero
and the integral curves of which are smooth (i.e.C°°) and arrive
at a neighborhood of the goal state in finite time. We call a
vector field with these properties a smooth feedback plan. The
smoothness of the integral curves guarantees that they can be
followed by a system with finite acceleration inputs:& = u. We
accomplish this by defining vector fields for each cylindrical cell
and face and smoothly interpolating between them. Schwartz and
Sharir showed that cylindrical algebraic decompositions can be
used to solve the generalized piano movers’ problem, in which
multiple (possibly linked) robots described as semi-algebraic sets
must travel from their initial to goal configurations without
intersecting each other or a set of semi-algebraic obstacles. Since
we build a vector field over the decomposition, this implies that
we can obtain smooth feedback plans for the generalized piano
movers’ problem.

I. INTRODUCTION

Feedback motion planning is a fundamental problem
control and robotics. If the state space is a smooth manifa
X C R, and the system satisfies the state transition-
f(z,u), afeedback strategfalso called aontrol law) isamap Fig. 1. The resulting cylindrical algebraic decomposition several flows
m: X — U, inwhich{ is the input space. A feedback strategyf a smooth feedback plan on the cell decomposition.
can also be seen as a vector fieldXnsince the choice af at
any pointz € X determines the tangent vector of the system
trajectory at that point. For a feedback strategy to be usefemoothly. Hence, our method computes a smooth feedback
the behavior of the system under the strategy must have sdptn for the generalized piano movers’ problem.
desirable properties. For example, stability is an impurta Traditional feedback control is well studied [2], but can-
consideration; the control law should prevent the systemmfr not be applied in many cases due to nonconvex obstacles
being unbounded as time goes to infinity. Another importaiit the environment. This is difficult enough when we are
property is convergence to a given goal point or region. Figr t considering nonconvex obstacles in the plane; it is far more
to be satisfied, the system should be guaranteed to comergehallenging when the obstacles are the semi-algebraidrsets
the goal region under application of the feedback control. B high-dimensional configuration space corresponding ¢o th
this paper, we consider feedback motion planning on the cefieneralized piano movers’ problem. In the algorithmic ot
of a cylindrical algebraic decomposition of a bounded stibsglanning community, the solution to this has been to compute
of R™. The system we consider is of the forin= . If our open loop trajectories linking initial and goal configuoats
cylindrical algebraic decomposition arises from a gernezdl but ignoring feedback considerations. This work is veryamp
piano movers’ problem as in Schwartz and Sharir [1], witlant because it provides a way to compute trajectories fior ve
some cells of the decomposition removed because of th@mplex, high-dimensional problems; however, it is impott
configuration space obstacles, then the feedback planofvedd think not only in terms not only of open loop trajectories,
field) we construct is guaranteed to take any initial state twit also about feedback control.
the goal state while avoiding the obstacle cells, and to do socSome have tried to make feedback more central through




the construction of potential fields that have no local mmimKinematic motion planning algorithms find paths which need
other than the goal state [3], [4]. If such a potential fielth capost-processing (e.g., time-scaling [14], [15], steerja§],
be found, the gradient of the field can be used as the velodify’], or other transformations [18], [19]) to be transfone
command for the robot. However, there are a number wito trajectories for dynamical systems. In contrast, RRd
difficulties associated with computing such potential ieM/e similar planners find such trajectories directly. In eitcase,
will bypass these difficulties by directly constructing acteg  an open loop trajectory for the system is found. This traject
field with the desired properties, rather than constructimgal can then be tracked using feedback.
valued function and using the gradient as the vector field. InThis approach has several disadvantages, however. First,
our case, we take a cylindrical algebraic decompositiomhef tpaths generated by motion planning algorithms often appear
configuration space (which is known to be able to solve the be of poor quality, having unnecessary turns and bends in
generalized piano movers’ problem [1]) and construct vectthem. This may result in them being difficult to follow for
fields for each of the cells in the decomposition. We do th& dynamical system. Second, this approach does not produce
by inductively defining vector fields on cells of dimensiora global feedback plan, but only a local feedback plan in a
one and then iteratively lifting them into more dimensions)eighborhood of the nominal trajectory. It would be better t
in the same way as the decomposition itself is constructeshlve the feedback problem once for the entire space.
Different locally defined vector fields are smoothly comiine Another approach, made plausible through tremendous ad-
using bump functions. The result is a globally defined vectoances in computational power, is to use motion planning
field the integral curves of which are smooth and converge atgorithms themselves as the feedback mechanism. In such
a goal state. An illustration of a vector field produced by ol model, any time the system deviated from the prescribed
algorithm is given in Figure 1. Our vector fields can be usddajectory, the trajectory would be re-planned (probalbynf
directly for kinematic systems, or they can be used to dgvelecratch) based on the new state of the system. This approach
dynamic control policies. For example, if the computed oectis extremely problematic as well. First, it has a very high
field is V(z), a control policy computational cost, and may not be suitable for real-time
. . applications. Second, this approach is not even guaramteed
u=K(V(z) - )+ V() bring the system to the goal state, although in practice ghini
for some feedback gaik can be used [5]. Under certainbe expected to.
conditions, it can be shown that the system will converge to These approaches, which add feedback almost as an af-
the integral curves of the constructed vector field [5], [6]. terthought to open loop trajectories, have significant |enois,

In the following section, we will review related work,as we have seen. Consequently, there have been some attempts
focusing on how the feedback motion problem has besvithin the robotics community to incorporate feedback more
addressed within the robotics community and describing directly. For example, the sampling-based neighborhoagtyr
detail the method of upon which ours is based. We wi(SNG) covers the free space with balls, each of which is
then briefly describe cylindrical algebraic decompositiand equipped with a local navigation function which is guaradte
our algorithm in detail. We will demonstrate that the intdgr to convey the robot into a ball nearer to the goal state.
curves of our vector field converge to the goal state. Other approaches to feedback motion planning in the presenc
of obstacles are often based on potential fields. Khatib [3]
developed a method which utilized a potential field over the
A. Background operational space to guide a manipulator or mobile robot to

The problem of finding a global motion plan in comthe goal. His approach suffers from local minima, however,
plex environments is difficult. Motion planning problems iras do many potential field methods. Waydo and Murray give
robotics typically involve non-convex constraints resgt a stream function method for navigation in two-dimensional
from obstacles in the environment. This presents a significanvironments [20]. A highly influential potential field meth
problem for traditional feedback control methods. Onetsmiu is that of Rimon and Koditschek [4], who show how to
might be to use state space sampling along with dynandevelopnavigation functiongpotential functions with a unique
programming to achieve not only feedback, but approximgateiinimum at the goal and meeting certain other criteria) gisin
optimal trajectories [7]-[9]. This may be feasible for lowpotential functions in a generalized sphere world. Rimod an
dimensional spaces, but both the time- and space-compiexit Koditschek have presented the most general feedback panni
exponential in the dimension of the state space, assumaig ttechnique up to now; their method applies to any problem
the sampling resolution remains fixed. The difficulty of feedvhose configuration space is topologically equivalent to a
back control for these problems motivates the developmentgeneralized sphere world. Our method is more general in
open loop motion planning algorithms, which can at least fintlat it applies to any configuration space with a well-defined
feasible paths through obstacle-cluttered environmediigh cylindrical algebraic decomposition.
algorithms have been extensively studied [10], [11]. Many Finally, work by Conneret al. [6] and Lindemann and
motion planning algorithms have been developed for kinemataValle [21] compute feedback plans over cell decomposi-
systems; several, such as RRTs [12] and PDST-EXPLOREns, as do we. Conneet al. consider an cell complex
[13] are specifically designed for systems with dynamicenvironment ind-dimensional Euclidean space. They then
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impose a potential field over each individual cell, taking &
the field the pullback of a potential function on a disk, whicl
has a closed form solution. They require that the gradiehts
the potential fields be perpendicular to the cell boundages 0.8r
that adjoining potential fields can be easily pieced togeth o7k
Putting the individual “component control policies” tobet
guarantees that the global control policy brings the rob
to the goal. In addition to specifying a control policy for
kinematic systems, they develop control policies for syste 04l
with dynamical constraints. Similarly, Lindemann and LH&/a
take a cell complex environment and define vector fields ov
the individual cells, which can also be see as compone
control policies. Since this work is the primary inspiratifor o1r
the current work, we describe it in detail below. Both [6] an 0
[21] can be seen in the context of the sequential compositi

of funnels approach [22], in which a collection of contredle

is developed, each of which converges to a goal set whigly 5 A pump function. If we let\(t) = (1/£)e=1/%, thenb(t) = 1 —

is either the actual goal state or in the domain of anotheft)/(A(t) + A(1 —¢t)).

controller. Following a sequence of these controllers gallise

the system to arrive at the goal state. This idea was further

developed in [5], [23]. the system can transition from following one component

vector field to another without any loss of smoothness. Bump
B. Smooth Feedback Plans on Convex Polytopes functions are defined as follows:

Lindemann and LaValle introduced the method upon which

this work is based [21]. We will describe their work in depthpefinition 1 Let X be a smooth manifold, and It be a
especially the parts in which our method parallels theiteyl osed set and/ an open setk ¢ U C X. A bump function

address the problem of smooth feedback motion plannigger 7 is a smooth. real valued function: X — [0,1] such
for a point robot whose environment isdadimensional cell 54

complex, each cell being a bounde@ddimensional convex
polytope. Such a cell complex might be generated from a
convex decomposition of d-dimensional polygonal environ-

ment. There is a goal staig, and consequently a goal c€ll, Bymp functions are in general difficult to find, even though
containingz,. They use the connectivity of the convex cellghejr existance is guaranteed. However, they are simple to
to construct a graph and use a graph search algorithm (s¥gnpute on the real line. Figure 2 illustrates a bump fumctio
as Dijkstra’s algorithm or breadth first search) to deteBvan \yhich smoothly transitions from 1 to 0 on the unit interval.
path from each cell t@’y. Then, each cell other thafl; has a |5 order for the approach to work, one more piece must be
“successor” cell which is the next cell on the path to the gog|,t in place. Within each cell, the vector fields must be béend
cell. in such a way so that on each face, the resulting vector field is
Once the cell graph has been computed, they construciyantically equal to the face vector field. In the interioreaich
vector field on each cell which has the following propertiesge all of the face vector fields must be smoothly interpeda
1) The vector field is smooth except for a set of measubtween. They use the cell vector field (which they call the
zero and all integral curves of the vector field ar@ttractorvector field) as an intermediary between the different
smooth. face vector fields, interpolating between them. They do this
2) All integral curves leave the cell via the exit faceusing the interior generalized Voronoi diagram (GVD) of the
entering the designated successor of that cell. cell. The GVD partitions the cell into regions correspormgin
3) Smoothness of the integral curves is preserved when aglleach face; in each region, bump functions are used to blend
boundaries are crossed. between the face vector field and the attractor vector field.
These properties guarantee that the vector field can be uSkdthe GVD itself, the vector field is identically equal to the
for smooth feedback motion planning for the systéms w.  attractor vector field, guaranteeing that all face vectaddgiare
An important element of the method is the use of the fastnoothly blended together in the interior of the cell. Inerd
that smooth feedback planss can be constructed using twaise the bump function to blend between the face vector field
types of simple vector fields, one pérdimensional cell and and the attractor vector field, they have to carefully carcstr
one per(d—1)-dimensional face, blended together using buntpe parameter of the bump function in such a way that it will
functions. Since bump functions smoothly interpolate leetw be equal to one on any of the faces of the GVD and zero
two functions (more generally, partitions of unity are dalpa on the face of the cell. They use the product of all fractional
of smoothly blending arbitrarily many functions together)distances to the faces of the GVD to do this. Formally, for
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1) p has support contained ify.
2) p(z) =1 for everyz € K.



violbav byt finite number of these polynomials. There are two main phases
LN )4 to the CAD algorithm. First, the polynomials are iteratyel
2022 projected downward, one dimension at a time, until a single
N dimension is reached. After reaching a single dimensios, th
SRR e real line ?s partitioned using the cri'FicaI points_ _of thejpmed
NN e polynom|als. Then,_ each segment in the partition is liftadkb
VilvrtoZZToup into ]R2 beco_mmg cylinders whlch are.partmoned ba}sed
NN A Ao on_thg critical points of the_ now_tvyo-d|men3|onal p_o_lynphma
s\y//s7--—| This is repeated, each time lifting up and partitioning the
NV s s s . . . . . .
c,22---=—| resulting cylinders, untiR" is reached. At that point, a sign-
********** <—| invariant partition ofR™ has been obtained. Figure 7 illustrates
this. More details can be found in [11], [25], [26].
Fig. 3. A smooth feedback plan generated using the algorithfald in a It is helpful to formally define the structure of a cell pro-
two-dimensional environment. duced by the cylindrical algebraic decomposition alganith
The definition is inductive:
any pointp it is defined as Definition 2
—1_ H d(p, fi) (1) . . . . L
d(p, fi) + d(p, f2)’ 1) A cylindrical algebraic cellC’’; in dimension one is either

an interval (a, b) or a pointa.
in which {f;}7 are the faces of the GVD and(p, f;) is the 2) A cell C, in dimensionn has one of the two forms: it is

distance fronp to face f;. Note the similarity to the analytic either the set of pair{(z,y) : z € Cr—1, f(z) <y <
switch used in navigation function and potential field metho g(z)} or the set of pair(z,y) : x € Cp,_1,y = f(x)},
This function is smooth (except at the vertices of the calty in which f andg are the(n—1)-dimensional projections

has the desired property of being identically equal to one on  of the original polynomials.
the exit face and zero on all other boundaries.

Since the bump function smoothly blends the face an#l: SMOOTH FEEDBACK PLANS ON CYLINDRICAL CELLS
attractor vector fields together, a vector field is obtainditty To construct a smooth feedback plan on the entire cell
is smooth over the entire cell. With small modifications, thdecomposition, we construct smooth plans on each indiVidua
above approach can be used in the goal cell as well. Thesll and then guarantee that smoothness is preserved across
show that piecing the individual cells together results in @ell boundaries. We assume that the input to our algorithm
vector field which is smooth over the entire free space. Théy the entire cylindrical algebraic decomposition (i.ehe t
also normalize the vector field at every point, so the globatdimensional sign-invariant cells and their correspogdin
vector fieldV (p) is defined ad/(p) = norm(b(p)Vy(p)+(1— bounding polynomials), as well as a connectivity graph cor-
b(p))Va(p)), in which V; is the face vector field for that point, responding to the connectivity of the-dimensional cells in
V. the attractor vector fieldp the bump function, andorm the decomposition. If the goal cell is denoted@gs then we
is the normalization function. An example of the trajeatsri can search this graph to find a cell path from any other cell
produced by the method is given in Figure 3. to the goal cell. Defining the successor of a €glas the next
cell on the path toC, from C, we can construct a directed
acyclic graph that descrlbes the cell paths from every cell,

Cylindrical algebraic decomposition was used to solve thleach of which ends at the goal cell. For any «&|lthe task
piano movers’ problem first by Schwartz and Sharir [1]. Theig to construct a vector field such that all integral curves in
used the Collins decomposition [24] to partition the confeagu C' are smooth inC' and exit into the successor cell ¢f,
tion space into free and obstacle cells and demonstrated hamd to ensure that if any flows ent€rfrom other cells, their
to find a path from a point in one free cell to a point in angmoothness is preserved (i.e., smoothness must be préserve
other connected free cell. Cylindrical algebraic decoritjpyzs  along all integral curves).

(abbreviated CAD) is extremely powerful; in fact, it is chpa In this section, we will describe our method for construgtin
of solving the first-order theory of the reals [25]. Giversthit the vector field and prove that the integral curves assatiate
is not surprising that it can solve the generalized pianoersv with it are smooth and converge to the goal state. We destribe

1. CYLINDRICAL ALGEBRAIC DECOMPOSITION

problem as well. in Section Il how cylindrical algebraic decompositionsdze
The input to the CAD algorithm is set of polynomials. Thejenerated by projecting the algebraic surfaces into psagre
polynomials are taken from the s@fx, ..., z,], the polyno- sively lower dimensions until only one dimension remains.

mials over the field of rational numbegs The algorithm takes At that point, the first cylinder cross-sections are given by
this set and computes a decomposition such that each celthis intervals; then, the surfaces are lifted up into sudeelys

semi-algebraic and sign-invariant under the given polyiatsn higher dimensions, being divided into cylinders of free or
Each cell, then, is formed by the intersection and union ofatcupied cells each time. Our algorithm proceeds analdgous
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beginning with the one-dimensional case, designing approp gc
ate vector fields and then lifting them into higher dimension
Before continuing, we need to clarify the notation we wil
be using. We will discuss our algorithm in terms of an
dimensional cellC,,, and its successdf,,. We also consider
the cross sections of the two cells, which are denoted jas
C,_1 and S,,_,. The cross sections are taken perpendicular
to the most recently lifted dimension (informally denotée t
vertical dimension). Thén — 1)-dimensional face between the
two cells will be denoted,,_; and its (n — 2)-dimensional hs
projection asF;,_». Note thatF;, > is the intersection of the
closures ofC,,_; and S,,_;. Also, we have upper and lower
bounding polynomials fot”,, and S,,, which we will call g¢,
fo. gs, and fs, respectively. Note that we assume tlias
and S,, are in neighboring cylinders; if they are in the same
cylinder, then the problem becomes very easy. We discuss thi
case later. f C
If general position assumptions are not made, then the
connectivity of the cells of neighboring cylinders becomeﬁg. 4. A face separating two cells from adjacent cylinddiise functions
very difficult to characterize; very little can be said abth# fo andgc are the bounding polynomials for one cell, ahg is either fs
behavior of the upper and lower bounding polynomials of tH& 9s depending on whether the succesSois the upper cell or the bottom
two cells. As in the seminal work of Schwartz and Sharir [1fe|'
we make the assumption that the polynomials are in general
position. The connectivity of neighboring cells become<imu
easier to analyze. Consider the cells_; and S;_;. Now,
consider two cell€”;, and Sy, in the cylinders formed by lifting
Cr_1 and S;_; into R*. If ¢, and S are adjacent, then
general position requires that they share either their uppe
lower bounding polynomial, or both. If they do not share eith
bounding polynomial, they will not be adjacent. Furtherejor
if only a single bounding polynomial is shared, then when
Cy and Sy, are lifted in higher dimensions, all adjacent cells , _ _
wil share both bounding polynomials. This means that tWilZ, e 1o tnes ofuector s on an el sbove snerd
adjacent cellsC,, and S,, in R™ share either all bounding smooth outward pointing vector field.
polynomials in all dimensions, or all but one. This greatly
simplifies the construction of the desired vector field. See
Figure 4 for an illustration of adjacent cells not sharing a
bounding polynomial. in the previous work described in Section Il, these vector
One final set of definitions is necessary before proceedidi§lds will utilize face vector fields and blending vector digl
First, for any pointp = (z,y) € C,, define the relative height (referred to as attractor vector fields in [21])._ We will _also
function h, : C, — R ash,(p) = (y — fo(x))/gc(z) — peed to defl'ne a pseudo-distance function which we will use
fo(z)). Next, define a projection function : C,, — F,_;. In construction the parameter of the bum_p function. For an
For the sake of clarity, we will not give a rigorous definitiorf2-dimensional poinp, we will use the notation,, (p) for the
for this projection, but letr take a point inC,, to the point in distance function.
F,,_, which preserves the relative heights in all dimensions, In one dimension, the construction is obvious, and is illus-
except the dimension being projected out. This is a smodfted in Figure 5. For the inward pointing field, each endpoi
mapping. has an associated inward pointing vector field; these twtovec
We will construct ann-dimensional vector field using two fields are interpolated using a blending vector field, which
types of (n — 1)-dimensional vector fields defined ary,_;. We leave unspecified for the moment. The distance function
The first will be one which flows out of the appropridte—2)- is the obvious Euclidean distance. If the céll (i.e., line
dimensional faceF,,_», and the second is a field which issegment) has endpoints and e;, we can formally define
inward pointing on the entirén — 2)-dimensional boundary di(p) = min(d(p, e1),d(p,ez2)), in which d is the standard
of C,,_1. We will also use “vertical” vector fields; i.e., positiveEuclidean metric. For the outward pointing field, we do not
and negative axis aligned vector fields in the lifted dimensi need a blending field; the vector field always points in the
We will begin by constructing vector fields in one dimesiorgsame direction.
and then proceed to the inductive steprtalimensions. As  Now we proceed to the inductive step. Assuming we have




a smooth vector field for thén — 1)-dimensional cellC,,_4,
we need to construct an appropriate vector field on the lifte
n-dimensional cell. Recall the structure of the cell as given
in Section Ill; each poinp in the cell C,, is a pair (z,y),

in which z is in the (n — 1)-dimensional cellC,_; and
fe(x) < y < ge(z). To smoothly interpolate between the
vertical vector field and arin — 1)-dimensional vector field,
we need a distance function @r),_; that is smooth. Assume
we have a smooth distance function for the @ll_». Then

we can define Chota
dnew .
troi(p) = 1— (p) /h—\

dnew (p) + dn—Q(Pn—Z) ’

in which d,,e, = min(|g(x) _ y|, |f(x) _ y\), g and f the Fig. 6. The component vector fields for a three dimensional Tk vertical

dl b di | ials i d face separating” and S is on the left, and we leks = fg. For the lower
upper ?‘n ) ower boun _'ng. polynomials (ﬁn,l,. and pn—2 part of C, the cross-section vector field is inward pointing; on th@ermpit
the projection of the poinp into C,,_». Then define exits through the appropriate face.

dn—1(p) = b(tn-1(p))dn—2(Pn—2) + (1 = b(tn-1(p))dnew(p),

in which b is the bump function seen in Figure 2. This function

has the desired smoothness properties and can be used i we define thg cross-section vector field in that casegto b
parameter of the blending bump function in the . Vezit- The vector fields for the upper and lower boundaries of

Our central approach is to decouple thelimensional prob- the cells are simple, being either upward pointing or dowawa

lem into two subproblems: first, a one-dimensional problem pointing, as appropriate. Finally, the bl_endlng vectordf_wﬂ .
the new lifted dimension; and second, @n— 1)-dimensional chosen to make sure that the flows continue to the desired exit

problem which has already been solved by the lower dime'?’?—gion' Within each cell, bI_end the component vector fields
sional constructions. We make the following definition: ~ °9€ther using bump functions, the parameter of the bump
functions being constructed in the same as in [21], which was

described in Section Il. It is fairly obvious that the uppada
lower cells prevent the integral curves from leaving thd cel
. except to ente€.,;;, and that all flows inC,;; leave through
1) {z € Cn = helgs(r(2))) < he(2)}, 1 fs(y) = fe(¥)  the exit face as desired. The orthogonality of the vertieator

gc

C(‘,Jlit

Cross-Sectional View
hs

Definition 3 The exit window of cell’,, exiting via faceF,,_;
is the set of points:

and gs(y) < gc(y) forall y € F, ;. fields and the(n — 1)-dimensional vector fields makes this
2) {z € Cp : he(z) < he(gs(()))}, if gs(y) = gc(y) relatively easy to show, although we will not give all theadkst
and fs(y) > fo(y) forall y € F,,_4. here.

3) {z € Cu}, otherwise. At this point, we have done most of the hard work to prove

In the definition, the first case correspondsStp having the our inductive hypothesis. We have constructed a vector field
same lower bounding polynomial &5, but an upper bounding using the vector field foC;,,—; and the new vertical vector
polynomial which is lower, and the second case corresporié®yds, which will guarantee that all flows it leave from the
to S,, having the same upper bounding polynomial but a low@ppropriate exit face’,_;. We have also recursively defined
bounding polynomial which is greater. Recall that at most ofthe pseudo-distance function used in the parameter of the
bounding polynomial can be different. In the third case, tHump function. Only two things remain. First, we need to be
entire cellC, is the exit window. Intuitively, the exit window able to have vector field that leaves out of the top or bottom of
consists of all points who have a relative height betweesghathe cell into another cell in the same cylinder. This is iyi
of the upper and lower bounding polynomials through whichse upward pointing vector fields on both the top and bottom
they must pass. faces and an inward pointing field ari,_;. The rest of the
The upper and lower boundaries of this exit window aréonstruction is identical. Finally, we also need to be able t
obvious, and these boundaries can be used to logicallytiparti constructan inward pointing vector field afi,. This too is
the cellC,, into at most two slices: denote the exit window a¥ivial; use V..., on the top facel,, on the bottom face,
C..i: and the other a§),,.4, if it exists. In order to define the and the inward pointing field o6’ ;. Note that the integral
vector field on each of these cells, we need to define vec@ifves crossing cell boundaries will remain smooth; this is
fields for the upper and lower faces, the cross-section, laad Pecause the vector field is always axis aligned on the cell
blending vector field. InC},.4, the cross-section vector fieldPoundaries, so adjacent vector fields match perfectly.
must be inward pointing on the entire cross-section boyndar All that remains is to show how to create a vector field for
in the inductive step, we assumed that we had one of thdéhe goal cell, which instead of exiting through an exit face,
available (call itV;,,). Since we know that fo€’.,;;, following should converge to a point. This is fairly simple, being just
the lower dimensional exit vector field will lead to a propelic a variation on the inward pointing cell just described. We do



not describe it in full, but it is simple to construct a vector Due to the complexity of cylindrical algebraic decompo-
field in one dimension that converges to a point on the intervaitions, it is highly unlikely that this method will be imple
This can be extended inductively by causing the verticalorec mented and used in its full generality. However, it has more
fields to converge to the desired coordinate together wigh tthan purely theoretical interest. It may be reasonable piyap
lower dimensional vector field. to feedback planning for the rod [27] or for polygonal robots
We have shown how to construct a vector field over the etfanslating and rotating in the plane [28]. Additionalliese
tire cylindrical algebraic decomposition so that all theegral ideas can be applied to other specialized cell decompositio
curves are smooth and converge to the goal state. This israused in conjunction with a precomputed path to provide
smooth feedback plan. Consequently, a trajectory beginnifeedback in a neighborhood of the path. In the future, we plan
anywhere in the configuration space will be smooth and wilb explore these avenues of research.
reach an arbitrary neighborhood of the goal state in finfteti
We summarize the result:
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