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1 Introduction and Preliminaries

For mobile robots, uncertainty is everywhere. Wheels slip. Sensors are affected by noise. Obstacles move

unpredictably. Truly autonomous robots (and decision-makers or agents in general) must act in ways that

are robust to these sorts of failures and unexpected events which we may think of in general as uncertainty.

In this chapter, we attempt to meet uncertainty head-on by explicitly modeling it and reasoning about it.

We use the term decision theoretic planning to refer to this broad class of planning methods characterized by

explicit accounting for uncertainty. We will consider a number of formulations for the problem of planning

under uncertainty and present algorithms for planning under these formulations.

Uncertainty can take many forms, but for brevity and clarity we will restrict our attention to only two

important types:

• Prediction uncertainty occurs when the effects of actions are not fully predictable. This can be

thought of as an uncertainty in future states.

• Sensing uncertainty is uncertainty in the current state. This occurs, for example, in robots that

have limited or imperfect sensing. We also admit the case where robots have no sensing at all.
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Some systems can be adequately modeled without either form of uncertainty. Problems in this category can

still be quite challenging and are the subject of many earlier chapters in this volume. Problems with only

prediction uncertainty are addressed in Section 2. This manner of formulation is appropriate for robots in

environments in which the effects of an action are not fully predictable, but with sufficient sensing capability

to fully determine the effects of each action a posteriori. When a robot’s sensors are no longer adequate to

fully determine the current state, the problem moves from the familiar state space to a richer space called

an information space. Formulations with sensing uncertainty – with or without prediction uncertainty – are

the topic of Section 3.

In the remainder of this section, we discuss some preliminary ideas that are relevant no matter what sort

of uncertainty is present.

Uncertainty as a game against nature A unifying theme will be the idea of uncertainty as a “game

against nature.” Imagine an external decision maker called nature whose decisions determine the values of all

uncertain parameters. Executing a plan becomes an interaction with nature as well as with the environment.

Both our robot and nature make decisions and the outcome is fully determined given both of these decisions.

In a sense, we are pushing all of the uncertainty in a system off to nature. Then, if we can develop some

model for how nature will make its decisions, we can build plans to react accordingly. We use the term

uncertainty model for this description of how nature will make its decisions.

The uncertainty model we select will directly influence the solution concepts we use. That is, an un-

certainty model determines the answer to the question “What does ‘optimal’ mean?”. As a result, the

mechanics of each planning algorithm will also change. In this chapter, we will consider two distinct types

of uncertainty models:

• Under nondeterministic models [1, 2], uncertainty is expressed as a set of possible outcomes. This

model is also sometimes called the “possibilistic”, “worst case”, or “set membership” model. Domains

in which firm guarantees are required or that involve interaction with a strong antagonist are good

candidates for nondeterministic uncertainty models.

• Under probabilistic uncertainty [3] we express uncertain events in terms of a conditional probability

distribution over possible outcomes, given certain current conditions. This model is particularly well-

suited for cases where uncertainty arises from precision errors in sensing or actuation, or from random



1 INTRODUCTION AND PRELIMINARIES 3

exogenous events.

The reader should note that legitimate criticisms can be leveled against both of these uncertainty models,

some of which are elaborated in Section 2.1.2. Consequently, selecting an uncertainty model can sometimes

be more of an art than a science. Most of the algorithms we will present are essentially independent of

uncertainty model in the sense that they can be adapted to the type of uncertainty we select. Generally, we

will derive similar but distinct versions for these two uncertainty models.

What is a plan? The concept of a solution for a planning problem in the absence of uncertainty is well

understood: We seek a sequence of actions that transforms the system of interest from an initial state into a

goal region, possibly optimizing some cost functional along the way. Uncertainty will force us to reconsider

this notion of what a solution is.

Certainly the idea of a solution as a sequence of actions is made inadequate by the introduction of

prediction uncertainty. Since state transitions are not fully predictable, we must prepare our agent to act

in any state it may reach, rather than only those along a single path we have intended for it. Sensing

uncertainty complicates the matter further because the agent will no longer even know its current state with

certainty and instead must be able to react to any sensor/action history it encounters. These ideas will be

made more formal in subsequent sections. The important idea here is that by allowing uncertainty we are

forced to revise our notion of what constitutes a plan; for each new formulation we study, we will ask “What

is a plan?”.

Discrete vs. continuous spaces Many decision-theoretic planning algorithms are easiest to understand

and implement under the assumption the spaces of states, actions and observations are finite, or at least

countable. Indeed, we will adopt this assumption in our initial presentations of most techniques. However,

in robotics, the most natural models often involve continuous spaces. For this reason, we must pay careful

attention to how these methods can be used to deal with continuous-space problems. Any algorithm designed

for a digital computer must have discrete versions of these spaces in some way. Such discrete spaces will

generally fall into one of two broad categories:

• Critical Events: For some problems, there is a natural, finite partition of the state or action space

into equivalence classes in such a way that the planning problem can be solved by considering only
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these equivalence classes, rather than individual states or actions.

• Sampling: When no critical event decomposition is available, we can resort to techniques that ap-

proximate continuous state or action spaces by a finite selection of samples.

2 Planning under Prediction Uncertainty

We now begin with algorithms for planning with uncertainty in prediction. Our primary concern here is the

need for feedback. Since we cannot plan an explicit sequence of states, we must instead prepare our decision

maker for any state it may encounter. Thus we replace the usual action sequences with functions called

policies that map from state space to action space. To simplify the presentation, we begin with a certain

class of degenerate planning problems, namely those in which only a single decision needs to be made. The

appropriate extensions to allow multi-stage decision-making (that is, planning) will be made in Section 2.2.

2.1 Making a Single Decision

Let us first consider the problem of making a single decision in the face of uncertainty in the outcome. We

will model this uncertainty as decision to be made by another decision maker called nature. To formalize, a

single-stage decision problem is defined by:

• A nonempty action set U that represents the set of choices available to our robot.

• A nonempty parameter set Θ that represents set of choices available to nature. This set should encode

all of the uncertainty in the outcome of our agent’s decision. In other words, given u and θ, the outcome

is fully determined. The value of θ is hidden from the robot.

• A cost (or loss) function L : U ×Θ→ R encoding the relative undesirability of each possible outcome.

This is the quantity we will want to minimize. Equivalently, we may define a reward function we

attempt to maximize.

• An uncertainty model for Θ. Under probabilistic uncertainty, this is the distribution P (θ). Under

nondeterministic uncertainty, we need only a set of possibilities for θ. We may assume that any θ ∈ Θ

is allowed, hence, no additional information needs to be specified. (Nondeterministic uncertainty will

not be so simple for later formulations.)
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The objective is to choose a u that will result in the smallest possible L(u, θ). However, the outcome of

any particular trial is unpredictable. Instead, we’ll use the uncertainty model for θ to describe an anticipated

outcome. Under nondeterministic uncertainty, the best we can do is to consider worst case cost. The worst

case optimal decision u∗ is

u∗ = argmin
u∈U

max
θ∈Θ

L(u, θ). (1)

With the probabilistic uncertainty model, the choice of θ is random, so the relevant measure is the expected

cost. The decision u∗ that minimizes expected cost is

u∗ = argmin
u∈U

Eθ[L(u, θ)] (2)

= argmin
u∈U

∑

θ∈Θ

P (θ)L(u, θ). (3)

In either case, a plan is simply a choice of some u ∈ U and the problem can be solved with ordinary

optimization techniques.

2.1.1 Including an Observation

The previous formulation gave the decision maker no special information about what selection would be

made for θ on a particular trial. We may extend the model by including an observation space Y . Each

y ∈ Y will correspond to a measurement or reading that we can think of as giving the decision maker a

“hint” about the θ that will be selected. The decision maker is given some y ∈ Y and can use this value

when selecting a u ∈ U . Thus, a plan is a decision rule (or strategy or policy) γ : Y → U . The presence of

observations will change our uncertainty models to be conditioned on the value of y:

• Nondeterministic: We assume that y restricts the set of choices available for θ. This can be expressed

as a function F : Y → 2Θ so that F (y) ⊆ Θ represents possible choices for θ given y. Now the optimal

decision rule γ∗ is simply the one that makes the best worst-case decision for each y:

γ∗(y) = argmin
u∈U

max
θ∈F (y)

L(u, θ). (4)

Notice that the only change from (1) is that the max operation is over only F (y), rather than all of Θ
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as before.

• Probabilistic: The distribution for θ is now conditioned on y. That is, for each y ∈ Y and θ ∈ Θ, we

assume that the conditional probability P (θ|y) is known.

Given y and u, we can write the expected cost (also called conditional Bayes risk in this context) as

Eθ[L(u, θ)] =
∑

θ∈Θ

P (θ|y)L(u, θ). (5)

The decision rule to minimize this is

γ∗(y) = argmin
u∈U

∑

θ∈Θ

P (θ|y)L(u, θ). (6)

Two prominent examples of single-stage decision-making with observations are parameter estimation [4,5]

and classification [6–8]. In both, we have U = Θ and L(x, θ) = 0 if and only if u = θ. The observation y

will give some information about θ, perhaps as a feature vector or a noise-tainted estimate of θ.

2.1.2 Criticisms of Decision Theory

This is an appropriate point to scrutinize the assumptions implicit in the the use of decision-theoretic

methods.

Generating cost functions First, most decision theoretic methods depend on a cost function L which

must be selected by hand for each problem. Choosing an appropriate cost function may be difficult. Utility

theory [5,9,10] deals with the existence and, to a lesser degree, construction of these cost functions under the

assumption that the decision maker is, in a precisely-defined way, reasonably rational. Note also that some

formulations can be reworked to eliminate the need for quantification of costs. For example, the minimax

formulation of (1) really only requires a total ordering on U ×Θ, rather than a real-valued cost function, to

make sense. More generally, many decision theoretic methods can be augmented with sensitivity analysis,

which is a way of quantifying the amount of disturbance in L needed to make some change in the optimal

policy. The idea is that if the policy is fairly robust to changes in L, then a poorly-crafted cost function will

not have much effect on the decisions made.
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Pessimism and nondeterministic uncertainty Nondeterministic models for uncertainty are often crit-

icized for being overly pessimistic. In fact, using nondeterministic uncertainty with worst-case analysis can

cause serious limitations on the planning problems that can be solved. Section 2.3.1 will highlight this prob-

lem in the context of the convergence of value iteration. Of course, the fact that we express uncertainty as a

set of possible outcomes does not constrain us to worst case analysis. One can easily imagine an optimistic

“best-cast” version of (4):

γ∗(y) = argmin
u∈U

min
θ∈F (y)

L(u, θ). (7)

This is still unsatisfying because we have simply traded excessive pessimism for an equal measure of optimism.

A compromise approach called Hurwicz weighting involves selecting a parameter α ∈ [0, 1] that is in some

sense a “coefficient of optimism”. We can use α to blend (4) with (7):

γ∗(y) = argmin
u∈U

{

α

[

min
θ∈F (y)

L(u, θ)

]

+ (1− α)

[

max
θ∈F (y)

L(u, θ)

]}

. (8)

What is probability? There is also debate about the proper understanding of probabilities. The Bayesian

interpretation views probability as a belief about a single trial. This is essentially the interpretation we have

used so far. Given y, a Bayesian thinks of P (θ|y) as a degree of belief that nature will select θ. In contrast,

the frequentist interpretation believes that probability is only properly understood in the limit as the number

of trials goes to infinity; a probability value says nothing to a frequentist about the next trial, but only about

the limit of an infinite sequence of trials. Frequentist interpretations of probability have led to a different,

more conservative form of decision theory [10].

2.2 Making a Sequence of Decisions

In the previous section, we considered the problem of making a single decision in the face of some uncertainty

in the outcome. We may think of planning under prediction uncertainty as a generalization of this idea

by introducing a state space X and allowing a sequence of successive decisions to influence the system’s

transitions between states in X.

We divide time into stages and number them starting with 1. Both the robot and nature make a decision at

each stage. For the moment, suppose that the number of stages is limited to K. We will relax this restriction

momentarily. Let ũ = (u1, u2, . . . , uK) and θ̃ = (θ1, θ2, . . . , θK) denote the sequences of decisions made by the
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robot and nature respectively. Given an initial state x1, we can define a state sequence x̃ = (x1, x2, . . . , xK+1)

according to a deterministic transition function: xk+1 = f(xk, uk, θk). Fig. 1 summarizes this situation for

a single stage. To state the problem more formally, we need:

• A nonempty state set X.

• A nonempty action set U . Alternatively, the set of available actions may depend on the current state,

i.e. we have a set U(x) for each x ∈ X. Since this variation only clutters the notation without making

the problem more interesting, we assume that the same actions are available from each state. One

possible realization of this action set is that lower-level techniques like motion planning, map building,

and manipulation are are implementations of the abstract actions we consider. This sort of layered

approach has been used in a number of successful robotic systems [11–16].

• A nature action set Θ. As with U , nature’s available actions may depend on x.

• A deterministic state transition function f : X × U ×Θ→ X.

• An initial state x1.

• A stage-additive cost functional

L(x̃, ũ, θ̃) =

K
∑

k=1

l(xk, uk, θk) + lF (xK+1). (9)

The cost functional L is defined in terms of single-stage cost function l : X × U × θ → R ∪ {∞} that

gives the cost for each possible transition, and a termination cost function lF : X → R∪{∞} that gives

a cost for being in each state when execution ends after K stages. Sometimes it will be convenient to

discuss the special case where the single-stage cost depends only on xk and uk. In such cases we write

simply l(xk, uk).

• A goal region XG. For each xg ∈ XG, we require lF (xg) = 0.

• An uncertainty model for Θ. As usual, we allow either probabilistic or nondeterministic uncertainty.

For nondeterministic uncertainty we need for each x and u a set of possibilities Θ(x, u). In the

probabilistic case, we need a distribution P (θ|x, u).
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Feasible Planning As an example, suppose we are not interested in optimizing any cost measure but only

in reaching XG. To accomplish this, we can set l(x, u) = 0 for all x ∈ X and u ∈ U and set

lF (x) =















0 if x ∈ XG

∞ otherwise

. (10)

With this cost functional, any plan execution that terminates in XG will have cost 0; any execution that

terminates outside XG will have infinite cost.

Allowing executions of indefinite length Now we relax the assumption that our decision maker will act

for a predetermined number of stages. Introduce into U a fictitious termination action uF which indicates

the decision maker’s intention to end the execution. Create a fictitious state xF , to which selecting uF

always leads. Select U(xF ) = {uF } so that once the agent has terminated, it cannot restart. Lastly, assign

l(xF , uF , θ) = 0 for all θ.

Now we imagine that stages continue infinitely, so that x̃, ũ and θ̃ become infinite sequences and the

accumulated cost for an execution is

L(x̃, ũ, θ̃) =

∞
∑

k=1

l(xk, uk, θk). (11)

Now we can define K in terms of the actions selected, instead of assuming it is known ahead of time:

K = min{k|uk = uF }. (12)

If the robot eventually selects uF , then K is well-defined. We neglect cases in which the robot never chooses

uF because the cost of such an execution will generally increase without bound. By defining lF (x) =

l(x, uF , θ) for all x and θ, we ensure that (9) still holds.

Defining an optimal policy A solution to this type of problem is a policy γ : X → U that produces an

action for each state. In the sequel, the terms plan and policy are interchangeable.

Consider nondeterministic uncertainty. Just as we did in the single-stage case, we want to select a policy

that minimizes the worst-case cost. For a single decision, that maximization was over nature’s choices for



2 PLANNING UNDER PREDICTION UNCERTAINTY 10

θ. Now the cost of a single execution of a plan depends on the entire sequence of choices made by both the

robot and nature, namely ũ and θ̃, as well as x̃, which they determine. For a policy π, let H(π, x1) denote

the set of all such histories that can result from executing π starting at x1. This is the set over which we

must consider the worst case. Let Gπ(x1) denote the worst-case cost of executing the policy π starting from

state x1:

Gπ(x1) = max
(x̃,ũ,θ̃)∈H(π,x1)

L(x̃, ũ, θ̃). (13)

The probabilistic case is similar, using expectation instead of instead of worst-case analysis:

Gπ(x1) = EH(π,x1)

[

L(x̃, ũ, θ̃)
]

. (14)

For either sort of uncertainty, an optimal policy π∗ is one that minimizes G:

π∗ = argmin
π

Gπ(x1), (15)

where the minimum is over all possible policies. Some readers may have noticed that this definition depends

on the initial state x1. Fortunately, there will exist a single policy that is optimal regardless of initial state.

Suppose a policy π∗ achieves the minimum in (15) for a fixed x1 and let x denote a state reachable from

x1. If π∗ were not optimal from x, then the goal could be reached from x1 via x with lower cost than by

executing π∗, contradicting the optimality of π∗. Consequently there will exist a single policy that is optimal

regardless of initial state.

2.3 Methods for Finding Optimal Solutions

We have defined a general type of planning problem that includes uncertainty in state transitions and defined

a notion of a solution to such a problem. Now we turn our attention to general-purpose solution methods for

these problems. As one might expect, we must carefully weigh the trade-offs between generality, optimality,

and tractability. Since optimality will come only at a high computational cost, we consider approximate

solution methods in Section 2.4. In one sense, computing an optimal plan is just an optimization problem

over the extremely large space of all policies. Fortunately, our optimality criterion G exhibits enough

structure to make several different kinds dynamic programming possible.
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2.3.1 Value Iteration

Value iteration [17] is so named because it gradually develops a value function or cost-to-go function from

which an optimal policy can be extracted. We will derive a recursive expression for this value function; this

recurrence will lead directly to a planning algorithm. The derivation proceeds slightly differently depending

on the uncertainty model.

Nondeterministic uncertainty Fix a stage k and let G∗
k(xk) denote the worst-case cost that could

accumulate if the robot executes π∗ starting at xk. We can write G∗
k(xk) as an alternation of minimum

(from the optimality of π∗) and maximum (from the use of worst-case analysis) operations:

G∗
k(xk) = min

uk

max
θk

min
uk+1

max
θk+1

· · ·min
uK

max
θK

{

K
∑

i=k

l(xi, ui, θi) + lF (xK+1)

}

. (16)

Suppose we separate the first term l(xk, uk, θk) from the summation. Since this term only affects the

outermost min and max operations, we can extract it from all of the others to get

G∗
k(xk) = min

uk

max
θk

{

l(xk, uk, θk) + min
uk+1

max
θk+1

· · ·min
uK

max
θK

[

K
∑

i=k+1

l(xi, ui, θi) + lF (xK+1)

]}

. (17)

Notice that the innermost portion of (17) is simply Gk+1(xk+1), leaving a simple recurrence:

G∗
k(xk) = min

uk

max
θk

{

l(xk, uk, θk) +G∗
k+1(xk+1)

}

. (18)

We also have a simple base case:

G∗
K+1(xK+1) = lF (xF ). (19)

The value iteration algorithm is a direct implementation of this recurrence. In iteration i of the algorithm,

we use the values of G∗
K−i+1 from the previous iteration (or, when i = 0, from the base case) to compute

G∗
K−i according to (18). Of course, K, the number of actions taken by the robot before terminating, is not

known ahead of time. One way to think of this is that the algorithm starts with the stage in which the robot

terminates and move backward in time, considering progressively longer executions that lead to termination.

The value of K never becomes relevant to the execution of the algorithm.
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An implementation might be based on two tables, each with one entry for each state. At iteration i, one

table holds the values of G∗
K−i+1 while the other is filled in with G∗

K−i. After an iteration finishes, the roles

of these tables can be swapped in preparation for the next iteration.

We want to terminate the value iteration algorithm when we reach an iteration in which no change occurs,

that is, when an iteration i is reached in which G∗
K−i = G∗

K−i+1. If this occurs, then we will have reached

a stationary value function G∗ = G∗
K−i that gives the worst-case cost that will result from executing an

optimal policy starting from each state. This convergence will occur for all states from which there exists

some policy that can guarantee reaching XG. If no policy can guarantee reaching XG, then no stationary

value function exists and value iteration will not converge. Fig. 2 shows a simple example of each case.

Finally, given a stationary value function G∗, we can extract an optimal policy π∗ in a straightforward

way. When the robot is in state xk, we want to choose the uk that achieves the minimum in (18):

π∗(x) = argmin
u

max
θ
{l(x, u, θ) +G∗(f(x, u, θ)} . (20)

Probabilistic uncertainty Under probabilistic uncertainty, a very similar approach will work, because

of the linearity of expectation:

G∗
k(xk) = min

uk,...,uK

Eθk,...,θK

[

K
∑

i=k

l(xi, ui, θi) + lF (xK+1)

]

(21)

= min
uk

Eθk

[

l(xk, uk, θk) +G∗
k+1(xk+1)

]

. (22)

The base case is the same:

G∗
K+1(xK+1) = lF (xF ) (23)

Equations (19) and (22) provide the base case and recursive case for value iteration, which works in just

the same way as in the nondeterministic case. Convergence, however, is an even thornier question than in the

nondeterministic case, because of the possibility that the costs-to-go will converge only in the limit. Fig. 3

shows an extremely simple example in which this is the case. This phenomenon will occur any time there is

nonzero probability of being forced by nature to traverse cycles in the state space. For many applications,

the costs-to-go will converge quickly to good approximations of the optimal values. More importantly, recall

that we are not directly interested in G∗, but in the policy π∗ we extract from it. Thus, we only need the
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cost-to-go to converge to a point where we are reasonably certain of which action is the correct choice from

each state.

Finally, when the dynamic programming iterations finish, we can use the resulting G∗ to extract an

optimal policy. The probabilistic analog to (20) is

π∗(x) = argmin
u

Eθ[l(x, u, θ) +G∗(f(x, u, θ)]. (24)

2.3.2 Policy Iteration

Value iteration was a dynamic programming technique in the space of states. Only after the stationary

cost-to-go function (or an approximation of it) is reached can a policy be extracted. In contrast, policy

iteration [17, 18] performs dynamic programming directly in the space of policies. At each iteration, a

fully-formed policy is generated.

Each step of policy iteration has two parts: policy evaluation, in which the expected cost of executing the

current policy is computed and policy improvement, in which this information is used to construct a policy

better than the current one. To simplify notation, assume that the cost of each transition depends on only

x and u, so that we can write l(x, u) rather than l(x, u, θ).

Policy evaluation First, how can we evaluate a fixed policy π? Recall that Gπ(x) denotes the expected

cost of executing π starting at x. The values of Gπ(x) will serve as our criteria for evaluating π. We can

derive an expression for Gπ(x) in a similar manner to the derivation of (22), but in which we restrict the

available actions in each state to the single action suggested by π:

Gπ(x) = Eθ [l(x, π(x)) +Gπ(f(x, u, θ))] (25)

= l(x, π(x)) +
∑

x′∈X

Gπ(x
′)P (x′|x, u). (26)

The transition probability P (x′|x, u) can be obtained by marginalizing over θ:

P (x′|x, u) =
∑

{θ|f(x,u,θ)=x′}

P (θ|x, u). (27)

Define n = |X|. Equation (26) is a linear equation with n unknowns, namely Gπ(x) for each x. If we
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make n copies of (26), one for each x ∈ X, we get a linear system with n variables and n equations. Solving

this system with standard linear algebra methods (singular value decomposition [19], for example) gives

values for Gπ(x).

Policy improvement Now we will show how to use Gπ to generate a new policy π′ that is an improvement

over π in the sense that Gπ′(x) ≤ Gπ(x) for all x. We can construct π′ in a relatively direct way. For each

x define π′(x) according to

π′(x) = argmin
u∈U

{

l(x, u) +
∑

x′∈X

Gπ(x
′)P (x′|x, u)

}

. (28)

This is probably best understood in relation to (24). The real difference is that during execution of policy

iteration, G∗ is unknown. Instead, we use Gπ as an estimate for G∗. Since π′ will take the best action from

x under the assumption that Gπ(x
′) is the cost-to-go after this step, we can conclude that π′ is at least as

good as π. If π′ = π, then the algorithm has converged to π∗ and can terminate.

One important property of policy iteration is that, unlike value iteration, it is guaranteed to terminate

in finite time. Since an improvement is made on each iteration, no policy will occur more than once. But

there are only |U ||X| different policies to consider. Therefore, this algorithm will terminate with the optimal

policy in at most |U ||X| iterations, but generally much faster than this.

2.3.3 Other Methods

We have focused on only two optimal algorithms in order to provide some amount of depth to the subject,

and because many other algorithms can be seen as variants of either policy iteration or value iteration.

The versions we describe are a form of backward dynamic programming in the sense that they begin with

termination and progress backward in time. Forward versions are also possible [17], but slightly more

complex conceptually. We described value iteration as a series of sweeps across the state space performing

updates but the ordering of updates allows more flexibility. In some cases this property can be exploited to

find good policies faster using so-called asynchronous methods [20–22]. Under certain restrictions, Dijkstra’s

shortest-path algorithm can be adapted to account for uncertainty [23].
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2.4 Methods for Finding Approximate Solutions

Now let us turn our attention to algorithms for planning that is only approximately optimal. Suboptimal

planning is important for problems that are too complex to solve optimally and for situations in which

resources for computation are limited. For example, if an autonomous robot suddenly discovers an error in

its model of the world (say, an unexpected obstacle in its path), it must quickly replan under its new world

model. In such a circumstance, a plan must be generated quickly and computing an optimal plan may not

be possible. We have already seen one suboptimal planning algorithm – the prematurely terminated version

of value iteration that arose for probabilistic problems that converge only in the limit. There are also a

number of more specialized algorithms.

2.4.1 Certainty Equivalent Control

Allowing even only prediction uncertainty makes planning much more difficult. What happens if we ignore

the uncertainty when generating a plan? This is the idea behind certainty equivalent control. More precisely,

we create an uncertainty-free planning problem by assuming that uncertain parameters will take on “typical”

values. So in our formulation, we might form a deterministic planning problem by defining a deterministic

state transition function f̄ according to the most likely successor:

f̄(xk, uk) = f(xk, uk, arg max
θk

P (θk|xk, uk)). (29)

In the special case where states are numbers, a “typical” result might be the expected one:

f̄(xk, uk) = f(xk, uk, Eθk
[xk]). (30)

By solving the planning problem with transition function f̄ , we get a plan for the original problem under f .

Remarkably, for a certain classes of systems (eg. linear systems with quadratic cost), this method has been

shown to generate optimal plans [24].

2.4.2 Limited Lookahead

Limited lookahead (or rolling horizon approximation) is an approximation technique that aims to reduce the

computation required in value iteration. Suppose we have some estimate of the optimal cost-to-go Ĝ ≈ G∗.



2 PLANNING UNDER PREDICTION UNCERTAINTY 16

We use this as the base case for value iteration, replacing (19). (Some readers may recognize this as essentially

the same method that drives computer game-playing, in which Ĝ is called an evaluation function.) If we run

i rounds of value iteration with Ĝ as the base case, the resulting policy will be optimal for the simplified

problem in which the decision maker acts for i stages before terminating with cost Ĝ(xk). The similarity of

this policy to π∗ depends directly on the similarity of Ĝ to G∗.

One question that remains is how to select Ĝ. One possibility is to use some heuristic method to generate

a base policy π̂ and use its cost-to-go as Ĝ:

Ĝ = Gπ̂. (31)

One-step lookahead algorithms built on a base policy in this way are called rollout algorithms. This rollout

can be viewed as a single step of policy iteration in the sense that the cost-to-go function of one policy, π̂,

is used to create a new, improved policy.

2.5 Conquering Continuous Spaces

Until now, we have talked about methods which handle problems with finite state spaces and finite action

sets. In many situations, especially in robotics, continuous state spaces and action sets are more natural.

By continuous, we mean that either the state space, the action set, or both have an uncountably infinite

number of elements. In this section, we will extend the above methods to problems with continuous spaces.

The main difficulty is that the techniques we have presented depend on iterating over the elements of X and

U . The key idea of the extension is to find a suitable finite representation of the original problem. Then the

new problem can be solved with methods similar to those we have already developed.

The first step of the transformation process is to approximate the continuous state space with a finite

sampling point set. These sampling points could be obtained by any of several methods, such as random

sampling [25], quasi-random sampling [26], grid sampling [27], or lattice point sampling [28–30]. In selecting

one of these sampling methods, one must consider several issues, including the uniformity of the points (How

well are the points spread out?) and neighborhood structure (Given a point in the underlying space, how

easy it it to locate its neighbors in the sample set?). Some example sets of sampling points in the unit square

are shown in Figure 4. A more thorough characterization and comparison of sampling techniques appears

in Section 5.2 of [23].

After the continuous state space is represented by a finite set, standard value iteration as described in
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Section 2.3.1 can be applied with the following modification. As the algorithm proceeds, we maintain the

value function G∗
k(xk) only for states in the sampling set. Recall that the update equation (either 18 or

22) depends on knowing G∗
k+1(xk+1) for each choice of uk and θk

1. If xk+1 is not in the sample set, then

G∗
k+1(xk+1) will not be available, as illustrated in Figure 5.

To make value iteration work, the value function at xk+1 needs to be approximated with values of states

in the sampled set [31]. In [32, 33], a neural network is used to approximate the value function. A more

conventional way is by interpolation. Interpolation involves designating some set of samples as “neighbors”

of xk+1 and using as the value function at xk+1 some weighted combination of the value function at each of

these neighbors. Interpolation has been most thoroughly studied for the case in which the sample set is a

grid. In this case, the interpolation can be performed in at least two different ways:

• Multi-linear interpolation. In the one-dimensional case, multi-linear interpolation is just linear

interpolation between data points. In higher dimensions, the procedure is recursive:

1. Choose any axis and project the point onto two faces that are perpendicular to the chosen axis.

2. Use (n − 1)-dimensional multi-linear interpolation to calculate the value function at these two

points.

3. Linearly interpolate to calculate the value of the given point according to the value of two points

on the two faces.

Multi-linear interpolation will process 2n data points for one interpolation in n-dimensional state space.

It can very time-consuming for high-dimensional problems.

• Simplex-based interpolation [34–37]. This method uses Kuhn triangulation to decompose the

n-dimensional hypercube into n! simplices, each of which has n + 1 vertices. Then the simplex-based

interpolation is to calculate the value according to the n + 1 vertices of the simplex containing the

given point. Since only n+ 1 data points and O(n log n) time will be needed in one interpolation, it is

much more efficient than multi-linear interpolation method.

Finally, with the finite sampled set and a chosen interpolation method, we could run value iteration as in

the discrete case, but interpolating to estimate the value function for states that are not in the sample set.

1If U and Θ are themselves continuous, it may be necessary to sample them as well.
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Similarly, the optimal policy can be extracted from either (20) or (24), again using interpolation to estimate

G∗. More details on sampling-based dynamic programming in continuous state spaces appear in [17,38–41].

2.6 Variations

We conclude this section with a survey of variations to the problem formulated in Section 2.2.

2.6.1 Infinite Horizon Models

The model presented in Section 2.2 deals with planning problems with a well-defined goal set. The decision-

maker interacts with the environment for a finite period of time before selecting a termination action.

What happens if we eliminate the termination actions and allow the robot to continue executing for an

infinite number of stages? Problems of this type are called infinite horizon problems and have been studied

extensively in artificial intelligence and stochastic control theory.

Since the process is infinite, we can omit x1, XG and lF from the model. However, the most striking

change is in the cost functional L(x̃, ũ, θ̃). Excluding the case in which there are cycles with zero or negative

cost in which the robot can linger, allowing K to approach infinity in (9) will cause L to diverge. As a result,

(9) is no longer a suitable optimality criterion. We must find a way of keeping the cost finite for an infinite

sequence of actions. Two possibilities are:

• Average Cost Per Stage (or gain-optimal cost): One way to keep the cost finite is to divide by the

number of stages:

L(x̃, ũ, θ̃) = lim
K→∞

1

K

K
∑

k=1

l(xk, uk, θk). (32)

If l is bounded by some constant, then it is clear that L must remain less than this constant. One

major problem with this model is that costs over any initial prefix are overshadowed by long-run

performance [42].

• Discounted Cost: Pick a parameter α ∈ (0, 1) called a discount factor and use α to define L in the

following way:

L(x̃, ũ, θ̃) =

∞
∑

k=1

αk−1l(xk, uk, θk). (33)

The intuition is to place less weight on costs that occur further into the future. We may think of α
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as a measure of “far-sightedness”. If α is increased, loss from later stages has greater influence on the

value of L. The average cost model can be seen as a limiting case as α approaches 1 [43].

It is important to understand that α is a part of the definition of the optimal policy. A change in

α can result in a change in which actions are considered optimal from each state. For this reason,

the average cost model is sometimes preferred because it does not introduce any new parameters to

tune. Regardless, discounted cost is the dominant model because it is a simple and mathematically

manageable way to keep finite the cost of an infinite length execution.

The dynamic programming methods of Sections 2.3 can be adapted to find optimal policies for dis-

counted costs, but care must be taken to ensure the stability and convergence properties of these

algorithms. A detailed treatment of these methods and others for infinite horizon problems is in [43].

In Section 2.6.2, we discuss reinforcement learning, which generally uses a discounted cost model, but

assumes that the uncertainty model for θ is unknown.

2.6.2 Reinforcement Learning

One of the major problems with decision-theoretic planning as we have presented it is that there is a heavy

modeling burden associated with the assumption that an uncertainty model for Θ is given. In the probabilistic

case, this is the assumption that the distribution P (x′|x, u) is known. When X and U are finite, there are

still |X| |U | separate values needed to describe this distribution. In a physical system, each of these would

require many trials to estimate accurately. For many nontrivial environments, this can be quite impractical.

An alternative is to force the robot to learn these probabilities along the way instead of specifying them

up front. The family of methods that takes this approach is generally called reinforcement learning (RL), and

occasionally neuro-dynamic programming [32] (although that term has a somewhat more specific meaning) or

simulation-based methods [17]. The primary difference from methods that assume that transition probabilities

are known is that reinforcement learning is an online model. This means that there is no separation between

planning and execution. Rather, as the robot interacts with the environment, it gradually refines its plan. We

will very briefly describe an algorithm that, for reasons that will soon be obvious, is called Q-learning [44].

Q-learning is quite simple, but worth understanding because nearly all other RL algorithms can be seen as

variations on the same basic themes.

We can think of Q-learning as type of value iteration in which, instead of using G∗ (which gives the value
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of each state), uses a function Q : X × U → R that gives values for state-action pairs. More precisely, we

define Q(x, u) to be the expected cost of starting from state x, taking action u, and acting optimally (that

is, according to π∗) thereafter.

The algorithm works by maintaining a table that lists, for each state-action pair, an estimate Q̂(x, u) of

the real Q(x, u). We initialize Q̂(x, u) arbitrarily. After each action, the agent is informed of the new state

x′ and the cost l of the corresponding transition and an update to the table is performed:

Q̂(x, u)← (1− ρ)Q̂(x, u) + ρ

(

l + min
u′∈U(x′)

Q̂(x′, u′)

)

. (34)

If we use the discounted-cost infinite horizon model (as is the custom in the reinforcement learning literature),

we must include the discount factor:

Q̂(x, u)← (1− ρ)Q̂(x, u) + ρ

(

l + α min
u′∈U(x′)

Q̂(x′, u′)

)

. (35)

In either update rule ρ is a designer-specified convergence rate or learning rate. It has been shown (for

example, in [8]) that with certain assumptions about the sequence of actions chosen, Q̂ will converge to

Q under this update rule. It may seem conspicuous that the update rule never mentions the transition

probability P (x′|x, u). In fact, Q-learning is an example of so-called model-free algorithms that never build

an explicit model of the transition probabilities. Instead, the probabilities are hidden by the fact that the

update in (34) or (35) is performed repeatedly, with the distribution of resulting states chosen according to

P (x′|x, u). Thus, successor states that are more likely will have greater influence over Q̂(x, u).

Exploration vs. exploitation To this point, we’ve shown how Q-learning maintains an estimate for the

value of each state-action pair without saying anything about which actions to choose. Suppose Q(x, u) is

known for all x and u. Then the best action to choose (cf. (20)) is

π∗(x) = argmin
u

Q(x, u). (36)

Unfortunately, the decision maker must choose actions without knowledge of the real Q. To obtain the best

cost over a limited period of time, there is a tension between exploring the space in order to make Q̂ a better

estimate of Q and exploiting actions that have been effective so far – that is, actions for which Q̂ is currently
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small.

The exploration-exploitation dilemma is an important enough problem in reinforcement learning that

many different methods have been suggested to deal with it, including initial optimism [45], which assigns

a large initial values to each Q̂(x, u), ensuring that each action is tried often enough to “drive down” its Q̂

value to near its true value, and ε-greedy policies [33] that select the current best action with probability ε

and choose randomly otherwise. A in-depth study of this topic is in [46].

Temporal credit assignment While the update rule (34) is guaranteed to converge, in practice this can

require a large number of trials to reach a good estimate for Q. The issue is that of credit assignment :

When a reward is received, to which actions to we attribute it? In (34), credit is assigned only to the action

immediately preceding the reward. This is troubling because if a large reward (say, obtaining a Ph.D.)

occurs, credit for this reward will initially only be granted to the action that immediately led to this reward

(finishing a dissertation) and not to any earlier actions that made the reward possible (enrolling in graduate

school). Only after earning many Ph.D.s (!) will the influence of this reward propagate backward to have

an influence on the decision to enroll in graduate school.

To combat this problem, more aggressive credit-assignment schemes have been developed that endeavor

to squeeze more out of each action taken by the decision maker. One of the most effective techniques is to

maintain an eligibility trace – a list of recent state-action pairs along with a weight for each. Eligibility traces

are so named because they determine which Q̂(x, u) values are eligible to be updated after the next action.

Recently visited states are marked as eligible. After receiving a new cost l, we perform an update similar to

(34) for each eligible state-action pair. As time passes, the weight of each eligible state decays (reducing the

amount of change in its Q̂ on subsequent iterations) until it is finally removed from the eligible list.

2.6.3 Additional Decision Makers

Everything up to this point has focused on a single decision maker interacting with an uncertain environment.

Uncertainty is modeled as a “game against nature”. A broad class of generalizations can be made if we allow

additional decision makers in the system, each with its own independent goals. This is the realm of game

theory [47,48], which is concerned with the general situation of multiple decision makers interacting in some

way. The breadth and depth of game theory literature will force us to focus on just a few issues that are

vital for planning in the presence of other decision-makers.
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Suppose we have n decision makers (not counting nature). At each stage, decision maker i will select an

action from an action set U i that has some influence on the resulting state. This means we must extend the

state transition function:

f : X × U1 × · · · × Un ×Θ→ X. (37)

Each decision maker also has its own cost functional Li which depends on all n actions selected at each

stage. It is assumed that each decision maker has complete knowledge of all of the Li’s. The special case

where n = 2 and L1(x̃, ũ, θ̃) + L2(x̃, ũ, θ̃) = 0 is unsurprisingly called a zero-sum game. This corresponds to

the situation where two players are in direct competition for some limited resource.

What does a plan look like when there are multiple decision makers? The deterministic policies considered

so far are no longer adequate. Fig. 6 illustrates a very simple problem that requires a mixed strategy that

selects actions at random according to some distribution. By contrast, the deterministic strategies we studied

for the single-agent case are also called pure strategies.

With a single decision-maker, we defined optimality in terms of the expected or worst-case cost. When

there are multiple decision makers, optimality is usually defined in terms of regret, which is a measure of

how much a decision-maker could have improved his reward if he had known what actions the other players

would take. For a single stage game in which the actions selected are u1, . . . , un, the regret Ri for player i is

Ri = Li(u1, . . . , un)− max
u′∈Ui

Li(u1, . . . , u′, . . . , un). (38)

For two-player zero-sum games, a pair of policies for which R1 = R2 = 0 is called a saddle point. A

fundamental result in game theory is that if mixed strategies are allowed, then a saddle point will always

exist. For nonzero-sum games and those with multiple players, the idea of a saddle points can be generalized

to Nash equilibria, which are also based on the idea of eliminating regret.

3 Planning under Sensing Uncertainty

In this section we address the planning problem in which the knowledge of the robot’s current state is limited,

or not available at all. This accounts for the cases when the robot’s sensors do not uniquely determine the

current state of the robot (sensing uncertainty) and when the robot’s control is not perfect (prediction
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uncertainty).

One common approach is to make an estimation of the current state, with all the information available,

and determine some bound for the state uncertainty. Then the uncertainty may be ignored, and the algo-

rithms of the previous sections may be applied. However, the state estimation may be completely avoided

in the computation of a plan, i.e., the robot may be able to reach achieve its goal without ever determining

its current state. This gives rise to the study of the information space, which will be the main topic of this

section.

Information spaces have appeared throughout the robotics literature in many forms and under many

different names. Information space concepts arise in maze searching [49], preimage planning [50], error

detection and recovery [51], manipulation [52–55], bug algorithms [56, 57], gap navigation trees [58, 59],

perceptual kinematic maps [60], perceptual equivalence classes and information invariants [61, 62], sensor-

based planning [63], searching unknown dynamic environments, D∗ [64], pursuit-evasion [65–69], probabilistic

navigation [70], Bayesian localization and SLAM [71,72], and guaranteed localization [73–75], and topological

maps [76], to cite just a few examples.

In general, the robot can gather information about the state from the following sources:

• Initial Conditions: Information the robot has about the task before the first sensing measurement is

taken or the first action is performed. The particular initial condition for a planning problem, denoted

by η0, can have several forms:

– Known State: The initial state x1 ∈ X is given. Uncertainty appears when nature interferes

with the state transition equation.

– Nondeterministic: A set X1 ⊂ X is given. The initial state is known to lie within X1.

– Probabilistic: A probability distribution P (x1) over X is given.

• Sensor observations: Online measurements of the state are made. In general they do not give all

the information of the state, either because some state variable cannot be measured (a sensor for it is

not available), or due to limitations in the sensor construction, sensor resolution, disturbances due to

noise, etc.

• Previous actions: The record of the actions may provide the robot with useful information. For

example, under the assumption of perfect control, if the previous action was to move to the east, the
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current state is more to the east as the previous state, although neither the previous nor the current

state is known.

• Available actions: The state may be inferred from knowledge of what actions are available to the

robot.

3.1 Discrete State Spaces

We first describe the information space when X, the state space, is finite or countably infinite. The new

element for computing a plan is that the robot does not have a complete knowledge of the current state, but

it can measure it in some way through observations. Because of this, we begin our discussions with modeling

the robot’s sensors.

3.1.1 Sensors

A sensor is a device that provides some measurement of the current state. When the robot performs a

sensing in the environment, the sensor maps the state space into the observation space Y . The observation

space is the set of all possible readings of the sensor, giving ‘hints’ of the current state. This is different

from the case presented in Section 2.1.1, in which the observation only gave hints of the possible action that

nature would take. The sensor mapping, denoted by h, takes several forms:

• State sensor mapping: Given a state x ∈ X, the observation y = h(x) ∈ Y is completely determined.

• State-nature sensor mapping: Nature is allowed to interfere with the sensor measurements. Let

Ψ(x) denote a finite set of nature sensing actions, defined for each x ∈ X. The mapping produces

an observation y = h(x, ψ) for every x ∈ X and for every ψ ∈ Ψ(x). As with Θ in Section 2.1, the

particular ψ chosen by nature is assumed to be unknown.

• History based sensor mapping: This case is similar to the last one, but the observation may depend

on previous states. If the plan is in stage k, the observation is y = hk(x1, x2, . . . , xk, ψk). In this case

ψk ∈ Ψk is the particular sensing action chosen by nature.

Adding sensing uncertainty to the model of Figure 1, yields the model presented in Figure 7. The decision

maker does not have direct access to the state, which can only be measured through sensors.
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3.1.2 Definition of the Information Space

Let X, U and f follow the same definitions as in Section 2.2. If the plan is at stage k, we want to determine

which information is available to the robot, either from the new observations, or the accumulation of previous

information. It is assumed that the robot keeps a record of each of the observations made. Thus, the

observation history, ỹ = (y1, y2, . . . , yk), is the ordered sequence of observations up to state k. Similarly,

the action history, ũ = (u1, u2, . . . , uk−1), is the record of the actions taken. It runs until stage k − 1,

because action uk−1 is applied in state xk−1, to yield the current state xk, where the observation yk is made.

Remember that η0 denotes the initial condition. The information state at state k is defined as

ηk = (η0, ũk−1, ỹk), (39)

that is, the initial condition together with the history. Alternatively, an information state can be expressed

recursively as

ηk = (ηk−1, uk−1, yk), (40)

since the difference between the previous and the current information state consists of the new observation

made and the new action taken.

The set of all possible information states ηi for 1 ≤ i ≤ k, is called the information space, I. Similar

to the case of prediction uncertainty, presented in Section 2.2, a plan in the information state is defined as

a mapping π, but in this case using the information space. This yields π : I → U . The components of a

planning problem for information spaces on countable state spaces are:

• A nonempty state space, X, which is either finite or countably infinite.

• A finite action space, U . It is assumed that U contains the special termination action uF .

• A finite nature action space, Θ(x, u) for each x ∈ X and u ∈ U .

• A state transition equation, f , that produces a state, f(x, u, θ) for every x ∈ X, u ∈ U , and θ ∈ Θ(x, u).

• A finite or countably infinite observation space, Y .

• A finite nature observation action space, Ψ(x) for each x ∈ X.
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• A sensor mapping, h.

• An initial condition, η0.

• A goal set, XG ⊆ X.

• A real-valued additive cost functional L, which may be applied to any state-action history, (x̃K+1, ũK),

to yield

L(x̃K+1, ũK) =

K
∑

k=1

l(xk, uk) + lF (xK+1). (41)

If the termination action, uF , is applied at some stage k, then for all i ≥ k, ui = uF , xi = xk, and

l(xi, uF ) = 0 if xi ∈ XG, or ∞ otherwise.

As before, the cost functional L(x̃, ũ) allows the evaluation of the quality of a plan. Since there is

uncertainty in the state prediction and in the sensing, we can use either worst-case or expected-case analysis

for evaluating plans. If H(π, η0) denotes the set of all possible state-action histories given the plan π from

the initial condition, the cost of the plan with worst-case analysis is

Gπ = max
(x̃,ũ)∈H(π,η0)

L(x̃K+1, ũK). (42)

If a probabilistic model of the uncertainty is known, the expected cost of a plan is

Gπ = EH(π,η0)L(x̃K+1, ũK). (43)

3.2 Deriving Information States

In its original definition, the information space seems unmanageable. In fact, it only seems useful for planning

problems where the number of states is very small, since the history representing an information state grows

linearly with the number of stages. The main idea here is to map the original information space into a

smaller space, ensuring that when a successful plan exists over the original space, a plan will exist also in

the smaller space. As expected, in the general case, the smaller space will present plans that are feasible,

but may not be optimal in the original space. For most of the planning problems asking for a feasible plan

is already a challenging task.
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In general, let κ : I → I◦ denote a surjective mapping from an information space I to a derived

information space, I◦. Ideally, I◦ should be as small as possible while ensuring that solutions to the

planning problem exist. While the design of the mapping κ may take advantage of specific planning problem

characteristics, we next present two general approaches to derive information states for I◦.

Nondeterministic Derived Information States. The first method we discuss is based on the infer-

ences that can be done given an information state. If the information state ηk is available, it is possible

to compute a the set Xk(ηk) in which the actual xk is known to lie. The set Xk(ηk) is called a derived

information state. To compute the derived information state, we have to infer over the observations and

actions performed. For the observations, we can define

H(y) = {x| y = h(x, ψ), for ψ ∈ Ψ(x)} (44)

that is, the set of all possible states the robot may be in given an observation. The set H(y) is called the

preimage of y. Similarly, if we let the actions available depend on the current state, the robot can determine

a set of states V where it may be, by computing

V (Uk) = {x′|Uk = U(x′) for x′ ∈ X}, (45)

in which Uk are the actions available at stage k. The current state then lies in the set H ∩V . Note, however,

that it can be assumed that the robot has some kind of sensor that detects which kind of actions are available.

This reduces the computation of V and H into only the computation of H. Thus, we will discuss only the

case when U will be fixed for all x ∈ X.

From the state transition equation, it is possible to know which states may be reached if action u is

applied at state x. Let F be this set, formally defined as

F (x, u) = {x′ ∈ X|∃θ ∈ Θ(x, u) for which x′ = f(x, u, θ)}. (46)

Using F and H, we next present how to compute the derived information state, Xk(ηk), for any state

k, using induction. Note that F and H eliminate the direct appearance of nature actions. The base case
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(k = 1) of the induction is

X1 = η0 ∩H(y1). (47)

This first step consists only of making consistent the initial condition with the first observation. Now

assume inductively that Xk(ηk) ⊆ X is available, and Xk+1(ηk+1) should be computed. First note that

ηk+1 = (ηk, uk, yk+1), and the new information is provided only by uk and yk+1. From ( 44), the state is

anywhere in H(yk+1). On the other hand, if xk was known, after applying uk, the state lies somewhere in

F (xk, uk). Since xk is unknown, but it is known that xk ∈ Xk(ηk), the new derived information state is

Xk+1(ηk, uk, yk+1) =
⋃

xk∈Xk(ηk)

F (xk, uk) ∩H(yk+1). (48)

Given that the derived information state is always a subset of X, the derived information space can be

defined as I◦ = 2X . Note that if X is finite, I◦ is also finite, which makes it preferable if the number of

stages is much larger than the size of X.

Probabilistic Derived Information States. As before, we will compute derived information states,

but assuming that nature is modeled probabilistically. Nature is also assumed to follow a Markov model,

in which its actions depend only on the current state, as opposed to actions or state histories. Thus,

a derived information state becomes a conditional probability distribution. The set functions H and F

become P (xk|yk) and P (xk+1|xk, uk), respectively. To compute P (xk|yk) Bayes rule is applied as:

P (xk ∩ yk) = P (xk| yk)P (yk) = P (yk| xk)P (xk). (49)

Solving for P (xk|yk) yields

P (xk|yk) =
P (yk|xk)P (xk)

P (yk)
=

P (yk|xk)P (xk)
∑

xk∈X

P (yk|xk)P (xk)

. (50)
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Bayes’ rule requires the knowledge of P (xk) and P (yk| xk). The prior P (xk) will be replaced later by a

derived information state, while the probability P (yk|xk) is easily computed as

P (yk|xk) =
∑

ψ∈Ψ(xk):yk=h(xk,ψ)

P (ψ|xk). (51)

Since each information state is a probability distribution over X, it can be written as P (xk| ηk), if it is

derived from ηk. As before, derived information states can be computed inductively. For the base case

(k = 1) we have η0 = P (x1) and the first observation y1. Together they determine P (x1|y1) as

P (x1| η1) = P (x1| y1) =
P (y1| x1)P (x1)

∑

x1∈X

P (y1|x1)P (x1)

. (52)

Assuming inductively that P (xk|ηk) has been computed, P (xk+1|ηk+1) has to be determined. Once again

the derived information state can be written as P (xk+1|ηk, uk, yk+1). Considering first the effect of uk, note

that

P (xk+1|ηk, xk, uk) = P (xk+1|xk, uk), (53)

because ηk contains no additional information regarding the prediction of xk+1 when xk is given. To eliminate

xk from P (xk+1|xk, uk) marginalization is used, giving the derived information state

P (xk+1|ηk, uk) =
∑

xk∈X

P (xk+1|xk, uk, ηk)P (xk|ηk) =
∑

xk∈X

P (xk+1|xk, uk)P (xk|ηk). (54)

The next step is to take into account the observation, yk+1. From (50), k is replaced with k + 1 and

P (xk) is replaced with the information accumulated, to give

P (xk+1| yk+1, ηk, uk) =
P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)

∑

xk+1∈X

P (yk+1|xk+1, ηk, uk)P (xk+1|ηk, uk)

. (55)

The expression for P (xk+1|ηk, uk) was given in (54). To calculate P (yk+1|xk+1, ηk, uk) note that

P (yk+1|xk+1, ηk, uk) = P (yk+1|xk+1) (56)
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because the observation depends only on the state2. Since P (yk+1|xk+1) is given as part of the sensor model,

we are finished deriving the computation of P (xk+1|ηk+1) from P (xk|ηk).

In this case, the derived information space is the set of all probability distributions over X. Thus, the

planning problem can be expressed again entirely in terms of the derived information space. A goal region

can be specified as constraints on the probabilities. For example, for some particular x ∈ X, the goal might

be to reach any derived information state for which P (x|ηk) > 0.9.

Let n = |X|. It is possible to embed I◦ in R
n with each state x ∈ X representing a vertex of a (n− 1)-

simplex. The coordinates of each vertex are expressed using probabilities (p1, p1, . . . , pn) as barycentric

coordinates. Here pi is the probability of being in state xi. Since p1 + · · · + pn = 1, the vertices of the

simplex (i.e., (1, 0, . . . , 0), (0, 1, . . . , 0), · · · , (0, 0, . . . , 1)) correspond to the cases when the state is completely

known. A planning problem of this kind is known as a Partial Observable Decision Process (POMDP).

Efficient solutions to POMDPs form an active area in the research community [77, 78]. The problem is

clearly very difficult, since the dimension of the space grows linearly with the number of states. However,

the method of value iteration, presented in Section 2.3.1 can be applied. Let ~x ∈ It be a derived information

state. A worst-case analysis yields a cost functional of

~l(~xk, uk) = max
xk∈Xk(ηk)

l(xk, uk) (57)

and

~lF (~xF ) = max
xF ∈XF (ηF )

lF (xF ). (58)

Thus, the dynamic programming recursion is similar to the one presented in Section 2.3.1, but using derived

information states:

G∗
k(~xk) = min

uk∈U







~l(~xk, uk) +
∑

~xk+1∈It

G∗
k+1(~xk+1)P (~xk+1|~xk, uk)







. (59)

Note that the set of observations and nature actions is finite, since I◦ is finite. This implies that

P (~xk+1|~xk, ~uk) is only an approximation distributed over a finite set of points of It. The space I◦ is a

continuous space which usually requires the specification of a probability density function.

2Here we are assuming that the sensor mapping does not depend on the history
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A policy can be found by approximating with a grid in the (n− 1)-simplex, and using interpolation for

evaluating points not in the grid [79,80]. This method will be described in more detail for information spaces

when the state space is continuous.

3.3 Continuous State Spaces

Until now, we have described information spaces when the underlying state space X is countable. Now we

consider the case when X is a continuous space.

3.3.1 Sensors

As expected, the catalog of sensors is richer in the continuous case. Some models of sensors are:

• Linear sensing. It is assumed that Y = X. Thus, an identity sensor can be defined in which y = h(x)

makes the state immediately known. If there is a bound r in the error of the measurement, the state

lies in the ball of radius r centered at y. This error is also commonly modeled with a probability

distribution (i.e., a Gaussian).

• Projection. In this model the dimension of the observation space, ny, is smaller than the dimension of

the state space. Either the observations ignore coordinates of X (i.e., a gyroscope gives orientation, but

ignores position), or X is embedded in a smaller dimensional space (i.e., a photograph takes X ⊂ R
3

into R
2).

• Landmark sensor. A landmark sensor detects specific identifiable features in the environment. In

its more abstract form, it detects specific points in the space (i.e., goal points or regions).

Specific sensors, such as an odometry sensor, which gives an estimation of the distance traveled, can be

defined in terms of a projection sensor modeled together with a history-based sensor mapping. In recent

years, depth sensors have been widely used in mobile robotics. This type of sensors gives measurements of

the spatial distribution and shape of the obstacles in the environment. This accounts for sensors such as the

sonar, or the laser range finder. Each sensor has an upper range. Obstacles farther from the sensor than

this range cannot be detected. As the range is decreased, the sensor becomes a proximity sensor, and in the

limit case it becomes a contact sensor. Note that the physical implementation may vary widely here. While
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an acoustic sonar measure time of flight of a high frequency sound, the contact sensor may be a device that

makes a reading when it is pushed, thus indicating that distance is equal to 0.

3.3.2 Discrete-Stage Information Spaces

The simpler case corresponds to a plan with discrete stages, and many of the concepts for discrete spaces,

at least at first glance, are the same as their continuous counterparts. Let the state space X ⊂ R
m be an

n-dimensional manifold3. The observation space Y ⊆ R
m is now an ny-dimensional manifold, for ny ≤ m.

Also, let U ⊆ R
m be an nu-dimensional manifold for nu < m.

Given that the time is discrete, the concepts presented for discrete spaces in Section 3.1.2 remain the

same, but taking into account the fact that the variables are continuous.

3.3.3 Continuous-Time Information Spaces

Most of the definitions presented in Section 3.3.2 remain the same when we consider a continuum of stages.

Thus, X, Y , Ψ(x) and Θ(x, u) are defined as before. However, the state transition equation now takes the

form

∂x

∂t
= ẋ = f(x, u, θ), (60)

for x ∈ X, u ∈ U and θ ∈ Θ(x, u). This means that the nature actions Θ(x, u) should be expressed in terms

of velocities. Also, in the discrete case, an information state was expressed in terms of history sequences,

but in the continuous case, histories become a function of time. Thus, ỹt : [0, t) → Y ũF : [0, t) → U , and

x̃F : [0, t)→ X are the observation history, action history, and state history, respectively, up to time t.

The sensor mappings are now expressed with:

1. State-sensor mapping. y(t) = h(x(t)).

2. State-nature mapping. y(t) = h(x(t), ψ(t))

3. History-based sensor mapping. y(t) = h(x̃F , ψ(t)).

Note that x̃ is usually the solution of a differential equation.

3For readers unfamiliar with the term, an n-manifold is a space that locally looks like R
n. Our everyday notion of a surface

corresponds to a 2-manifold as a subset of R
3. See [81].
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The information state at time t becomes

ηt = (η0, ũt, ỹt), (61)

which has the same form and meaning as its discrete counterpart, but in continuous time. The set of all

possible ηt is the information space at time t, It. Since each ηt ∈ It is a function of time, It is a space

of functions. Combining all the information spaces up to time T ∈ [0,∞), a single information space I is

obtained as

I =
⋃

t∈T

It. (62)

To evaluate the quality of a plan, a new cost functional should be defined. Let L denote a real-valued,

additive cost functional, which may be applied to any state-action history, (x̃t, ũt), defined as

L(x̃t, ũt) =

∫ t′

0

l(x(t′), u(t′))dt′ + lF (x(t)), (63)

in which l(x(t′), u(t′)) is the instantaneous cost, and lF (x(t)) is a final cost.

3.4 Examples of Planning in the Information Space

3.4.1 Moving in an L-shaped corridor

This idealized example, which appeared originally in [23], is intended to illustrate the issues that arise in

selecting an appropriate map κ for derived information states. The state space, X, for the example shown in

Figure 11 has 19 states, each of which corresponds to a location on one of the white tiles. For convenience,

let each state be denoted by (i, j). There are 10 bottom states, denoted by (1, 1), (2, 1), . . ., (10, 1), and 10

left states, denoted by (1, 1), (1, 2), . . ., (1, 10). Since (1, 1) is both a bottom state and a left state, it will be

called the corner state.

It is assumed for this problem that there are no sensor observations. Nature, however, interferes with the

state transitions, which leads to a form of nondeterministic uncertainty. If we try to apply an action that

takes one step, nature may cause two or three steps to be taken, if possible. This can be modeled as follows.

Let U = {(1, 0), (−1, 0), (0, 1), (0,−1)} and let Θ = {1, 2, 3}. The state transition equation is defined as

f(x, u, θ) = x+ θu, unless it is impossible to move to the required location, in which case f(x, u, θ) = x. For



3 PLANNING UNDER SENSING UNCERTAINTY 34

example, if x = (5, 1), u = (−1, 0), and θ = 2, then the resulting next state is (5, 1) + 2(−1, 0) = (3, 1).

Since there are no sensor observations, the information state at stage k is

ηk = (u1, . . . , uk−1). (64)

Now use the derived information space, I◦ = 2X . The initial state, x1 = (10, 1) is given, which means that

the initial information state, η1, is {(10, 1)}. The goal is to arrive at the information state, {(1, 10)}, which

means that the task is to design a plan that moves from the lower right to the upper left.

With perfect information, this would be trivial; however, without sensors the uncertainty may grow very

quickly. For example, after applying the action u1 = (−1, 0) from the initial state, the derived information

state becomes {(7, 1), (8, 1), (9, 1)}. After u2 = (−1, 0) it becomes {(4, 1), . . . , (8, 1)}. A nice feature of this

problem, however, is that uncertainty can be reduced without sensing. Suppose that for 100 stages, we

continue to apply uk = (−1, 0). What is the resulting information state? As the corner state is approached,

the uncertainty is reduced because the state cannot be further changed by nature. It is known that each

action, uk = (−1, 0), decreases the X coordinate by at least one each time. Therefore, after 9 or more stages,

it is known that ηk = {(1, 1)}. Once this is known, then the action (0, 1) can be applied. This will again

increase uncertainty as the state moves through the set of left states. If (0, 1) is applied 9 or more times,

then it is known for certain that xk = (1, 10), which is the required goal state.

A successful plan has now been obtained: apply (−1, 0) for 9 stages, then apply (0, 1) for 9 stages. Recall

from Section 3.1.2 that a strategy is generally specified as π : I → U ; however, for this example, it appears

that only a sequence of actions is needed. The actions do not depend on the information state. Why did

this happen? If no observations are obtained during execution, then there is no way to use feedback. There

is nothing to learn by executing the plan. In general, for problems that involve no sensors and a fixed initial

information state, a path in the information space can be derived from a plan. It is somewhat strange that

this path is completely predictable, even though the original problem may involve substantial uncertainties.

We always know precisely what will happen in terms of the information states if there are no sensors and

the initial condition is fixed.

To make the situation more interesting, assume that any subset ofX could be used as the initial condition.

In this case, a plan π : I → U must be formulated to solve the problem. From each initial information state
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η, a path in I can still be computed from π. Specifying a plan over all of I appears complicated, which

motivates the next consideration.

The ideas from Section 3.2 can be applied here to collapse the information down from 219 (over half of

a billion) to 19 derived information states. The mapping κ : I → I◦ must be constructed. We first make

a naive attempt to collapse the information state down to only three states. Let I◦ = {g, l, a}, in which g

denotes “goal”, l denotes “left”, and a denotes “any”. The mapping is

κ(η) =























g if η = {(1, 10)}

l if η is a subset of the set of left states

a otherwise

. (65)

It might seem that this derived information space will lead to a very compact plan for solving the problem.

Based on the successful plan described so far, the plan on I◦ can be defined as π(g) = uF , π(l) = (0, 1),

and π(a) = (−1, 0). What is wrong with this? Suppose that the initial state is (10, 1). There is no way to

require that uk = (−1, 0) be applied 9 times to reach the l state. If (−1, 0) is applied to the a state, then it

is not possible to determine when the transition to l should occur.

Now consider a different derived information space. Suppose that there are 19 derived information states,

which includes g as defined previously, li for 1 ≤ j ≤ 9, and ai for 2 ≤ i ≤ 10. The mapping κ is defined

as κ(η) = g if η = {(1, 10)}. Otherwise, κ(η) = li, for the smallest value of i such that η is a subset of

{(1, i), . . . , (1, 10)}. If there is no such value for i, then κ(η) = ai, for the smallest value of i such that η is a

subset of {(1, 1), . . . , (1, 10), (2, 1), . . . , (i, 1)}. Now the plan may be defined as π(g) = uF , π(li) = (0, 1), and

π(ai) = (−1, 0). Although it might not appear to be any better than the plan obtained from collapsing I◦ to

three states, the important difference is that the correct information state transitions occur. For example, if

uk = (−1, 0) is applied at a5, then a4 is obtained. If u = (−1, 0) is applied at a2, then l1 is obtained. From

there, u = (0, 1) is applied to yield l2. These actions can be repeated until eventually l9 and g are reached.

3.4.2 The Kalman filter

When the transition function f , and the sensor mapping h are both linear functions, and nature actions, θ

and ψ, can be modeled as Gaussian, the derived information states will follow a Gaussian distribution too.

These assumptions are reasonable in many mobile robotics contexts. In this case, a mapping κ : I → I◦, in
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which I◦ is the space of all Gaussians, will collapse I without any loss of information. This is referred to

as a linear-Gaussian model, which is the basis for the most common approach for collapsing I, the Kalman

filter. Each Gaussian is specified by an n-dimensional mean vector µ, and an n × n symmetric covariance

matrix, Σ.

Since the Kalman filter relies on linear models, f can be written as

xk+1 = Akxk +Bkuk +Gkθk, (66)

in which Ak, Bk, and Gk are real-valued matrices of appropriate dimensions. The subscript k is used because

the Kalman filter works even if f is different in every stage. Similarly, the sensor mapping becomes

yk = Ckxk +Hkψk. (67)

Since an information state P (xk|ηk) ∈ I
◦ is represented by its mean vector and its covariance matrix, our

goal here is to compute µk and Σk at stage k. We next give the update expressions, omitting their derivation,

that can be found in many textbooks on stochastic control (i.e., [82]). Given the initial conditions µ0 and

Σ0, we have

Σ′
k+1 = AkΣkA

T
k +GkΣθG

T
k , (68)

Σk+1 = (I − Lk+1Ck+1)Σ
′
k+1, (69)

µk+1 = Akµk + Lk+1(yk+1 − Ck+1Akµk), (70)

with

Σk+1 = (I − Lk+1Ck+1)Σ
′
k+1. (71)

The expression for Lk (substitute k + 1 for k to obtain Lk+1) is

Lk = Σ′
kC

T
k [CkΣ

′
kC

T
k +HkΣψHk]

−1. (72)

When nature is not Gaussian, or the transition equation is not linear, the derived information states

density can be approximated using a grid, with numerical integration between the grid points. Let S ⊂ X
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be the set of points in the grid. In the initial step, P (s) is computed from p(x) by numerically evaluating the

integrals of p(x1) over the Voronoi region of each sample. Now suppose that P (sk|ηk) has been computed

over Sk, and the task is to compute P (sk+1|ηk+1) given uk and yk+1.

Considering only uk, P (sk+1|sk, uk)) approximates p(xk+1|xk, uk) when computed in the manner de-

scribed above. At this point the densities needed have been approximated by discrete distributions.

The resulting distribution is P (sk+1|ηk, uk), and the effect of yk+1 in p(xk+1|yk+1) can be computed

approximately by P (sk+1|yk+1) using the grid samples. The resulting distribution, P (sk+1|ηk+1) represents

the approximate derived information state. It turns out that the Voronoi regions over the samples do not

even need to be carefully considered. One can work directly with a collection of samples randomly drawn

from the initial probability density p(x1). The general method is referred to as particle filtering, and has

yielded good performance in applications to experimental mobile robotics [83].

3.4.3 Sensorless manipulation

Imagine a planning problem in which the robot does not have any sensors, so that there are no observations

at all. Moreover, the initial condition is unknown. Is it still possible to compute a plan to reach a goal

state? As we will explore in the next example, in some problems knowing only the action history is enough

to compute a successful plan.

In the context of manufacturing, a part may need to have an specific orientation before being assembled

with other components. In a sensorless setting, a robot, in this case a robotic arm with a gripper, needs to

orient a part without any feedback [84,85]. The part is modeled as a convex polygon. Its initial orientation

is unknown; the goal is to bring the part to a known orientation, up to symmetry. The manipulation process

is shown in Fig. 8. The part moves on the conveyor towards a fence, against which it comes to rest after

possibly rotating to reach a stable orientation. The robotic arm grasps the part, changes its orientation, and

drops it up again in the conveyor. This process is repeated until the part achieves the desired orientation

against the fence.

The natural state space for this problem is S1, corresponding to the orientation of the part. At each step,

the robotic arm rotates the part through some angle, so the action space is likewise S1. These continuous

spaces need to be transformed into finite sets. The key of the transformation is to identify critical events

which partition the space into equivalence classes, then plan over this set of equivalence classes rather than
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the full space. These critical events are problem specific. In the case of the part orienting, the critical events

in action space are orientation angles such that for a given information state, rotations either greater or less

than these angles will reach different information states.

Thus, the state space X is chosen as the set of all the stable orientations of the part when it is lying

statically on the fence. Since the part is polygonal, the size of X is bounded above by the number of edges in

the part. Using the concepts presented in Section 3.2, the derived information space is I◦ = 2X . The initial

derived information state consists of all possible stable orientations (i.e. η0 = X), since the part orientation

is initially unknown. The action set is the range of rotation angles available to the gripper, partitioned into

intervals of rotations that lead to identical resulting information states. The effects of a specific rotation

action on a rectangular part are shown in Fig. 9. The critical events in the continuous action set for an

information state with two states are shown in Fig. 10.

The objective is to find a sequence of actions such that the derived information state at the final stage

corresponds to a single possible orientation of the part. Once one orientation is uniquely identified, the

robotic arm may perform an additional rotation to achieve any desired goal orientation. With the finite

action set, a directed graph can be constructed whose nodes are information states and whose edges are

transitions resulting from the discrete action set. Standard graph searching techniques can be used to search

for a directed path to a singleton information state. This path in the collapsed information space graph

constitutes a plan for eliminating uncertainty in the part’s orientation.

The reason that successful planning is still possible starting from total uncertainty and without sensor

feedback is that some actions in this information space have a conformant property, in which the same

resulting state can be reached by the same action from many different initial states. By selecting conformant

actions, uncertainty can be reduced. The same principle is applied in the context of mobile robot localization

with extremely limited sensing in [75].

4 Conclusion and Bibliographical Remarks

Our presentation has been tightly constrained by space limitations. There are a number of books to which

we refer the reader for elaboration. Treatments of decision theory in general appear in [4–6]. Bertsekas [24]

covers much of the same material as the present chapter and is well-stocked with examples. Part III of [23]
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is also quite similar in content but is much more detailed. A general treatment of the infinite horizon

case is [43]. Sutton and Barto [46] is the definitive introduction to reinforcement learning. Ghallib, Nau

and Traverso [86] consider planning with primarily logic-based representations. Russell and Norvig [87]

cover planning under (mainly probabilistic) uncertainty from an artificial intelligence perspective. Some

recent papers on decision-theoretic planning are collected in [88]. Game theory is addressed in greater detail

in [47,48,89].
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Figure 1: Planning with prediction uncertainty.

x1 xg xgx1

(a) (b)

Figure 2: Two simple nondeterministic planning problems. In (a), nature can always prevent the decision
maker from reaching the goal. In (b), all flows lead to the goal.
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Figure 3: Probabilistic uncertainty can cause value iteration to converge only in the limit. Edges are labeled
with transition probabilities. In this example, nature can cause executions of arbitrary length. However,
executions that traverse the cycle in the graph many times are unlikely. Assuming the cost of each transition

is 1, the cost-to-go for x1 converges 2 + 4
∑∞
i=0 i

(

1
2

)i+1
+ 1 = 7.
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(a) (b) (c)

Figure 4: Three ways to select samples in the unit square. Dots represent samples, the lines show their
respective Voronoi cells. Larger Voronoi cells indicate poor uniformity. (a) Pseudo-random samples. (b)
Grid samples. (c) Lattice samples.

x1

x2 x3

x4 x5

u, θ
x

Figure 5: Dots denote sample states. Applying an action u and nature action θ on a sampled state x1 moves
the system to state x which is not in the sampled set. Some form of interpolation is needed to estimate the
value function at x.
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Figure 6: An illustration of the need for mixed strategies. The left robot attempts to pass through a corridor
while the right robot attempts to block its progress. Each must independently decide whether to move to
the left or right. If the left robot plays a pure strategy, the right robot can take advantage and always get
in the way. A mixed strategy that chooses each direction equally often will enable the left robot to escape.

Nature

Decision

Maker
fh

Nature

uk

θk

xk+1

ψk

xk

yk

Figure 7: Planning with sensing uncertainty. Note that the decision maker does not have direct access to
the state.

Figure 8: Overhead overview of a part on the conveyor. The conveyor moves downward. The robot picks up
a part and rotates it through a chosen angle before placing it on the conveyor. The part then drifts on the
conveyor into contact with the fence, possibly rotating compliantly as it comes to rest.
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Figure 9: Effects of rotation actions on a rectangular part. The action space is divided into four equivalence
classes according to the resulting state. The crosses mark a representative action from each class.

Figure 10: Critical events for an information state with two states.
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Figure 11: An example that involves 19 states. There are no sensor observations; however, actions can be
chosen that that enable the state to be estimated. The example provides an illustration of collapsing the
information space.
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