
Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs∗

Jingjin Yu
Department of Electrical and Computer Engineering

University of Illinois, Urbana, IL 61801
jyu18@uiuc.edu

Steven M. LaValle
Department of Computer Science

University of Illinois, Urbana, IL 61801
lavalle@uiuc.edu

Abstract

In this paper, we study the structure and computational com-
plexity of optimal multi-robot path planning problems on
graphs. Our results encompass three formulations of the dis-
crete multi-robot path planning problem, including a variant
that allows synchronous rotations of robots along fully occu-
pied, disjoint cycles on the graph. Allowing rotation of robots
provides a more natural model for multi-robot path planning
because robots can communicate.
Our optimality objectives are to minimize the total arrival
time, the makespan (last arrival time), and the total distance.
On the structure side, we show that, in general, these ob-
jectives demonstrate a pairwise Pareto optimal structure and
cannot be simultaneously optimized. On the computational
complexity side, we extend previous work and show that, re-
gardless of the underlying multi-robot path planning problem,
these objectives are all intractable to compute. In particular,
our NP-hardness proof for the time optimal versions, based
on a minimal and direct reduction from the 3-satisfiability
problem, shows that these problems remain NP-hard even
when there are only two groups of robots (i.e. robots within
each group are interchangeable).

Introduction
Discrete multi-robot path planning problems seem to have
originated from the study of Sam Loyd’s 15-puzzle (Loyd
1959; Story 1879), a well known board based puzzle game.
The 15-puzzle can be viewed as moving 15 robots on a 16-
vertex grid graph, which readily generalizes to the multi-
robot path planning problem on a N -vertex graph with n <
N robots. In the most basic formulation, only one pebble
may move in a time step to an adjacent unoccupied vertex;
we call this problem pebble motion on graphs or PMG.

Since robots can act autonomously and communicate,
multiple robots are capable of moving in the same time step.
A parallel move of robots is a synchronous move of a (non-
self-intersecting) chain of robots as long as the first robot
moves into a vertex that is unoccupied at the beginning of the

∗This work was supported in part by NSF grant 0904501
(IIS Robotics), NSF grant 1035345 (Cyberphysical Systems), and
MURI/ONR grant N00014-09-1-1052. We thank the anonymous
reviewers for their helpful suggestions.
Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time step. If multiple disjoint parallel moves per time step
are allowed, we call this problem variant multi-robot path
planning on graphs with parallel moves, or MPPp, which
were studied in (Ryan 2008; Surynek 2010), among others.

Feasible moves require unoccupied vertices in PMG and
MPPp formulations. More recently, in a variant of the prob-
lem (Yu and LaValle 2012; 2013), robots are allowed to
rotate synchronously along fully occupied cycles. It was
pointed out in (Yu 2012) that instances having N robots
(on a N -vertex graph) can often be feasible. We call this
problem multi-robot path planning on graphs with parallel
moves and rotations or MPPpr for short. The rotation primi-
tive was also mentioned in a grid setting (Standley and Korf
2011). Arguably, MPPpr provides a better model for multi-
robot path planning problem than MPPp does for two rea-
sons: (1) when parallel moves are allowed, it is natural to
include rotations, and (2) allowing rotations can only reduce
the best plan’s size, given some optimality criterion.

It is well known that PMG (therefore, MPPp) is solvable
in polynomial time (Kornhauser, Miller, and Spirakis 1984).
Moreover, feasibility tests for PMG can be performed in lin-
ear time (Goraly and Hassin 2010). These algorithms were
generalized to include MPPpr in (Yu 2012).

Since feasible solutions can be found efficiently, one
might be motivated to seek polynomial time optimal so-
lutions to these formulations. For PMG, a distance op-
timal solution is NP-hard to compute (Goldreich 1984;
Ratner and Warmuth 1990). Finding a plan with minimum
makespan (i.e., last arrival time) for MPPp was also shown
to be NP-hard (Surynek 2010). However, not much is known
about the computational complexity of optimal MPPpr for-
mulations or optimal MPPp formulations other than mini-
mum makespan. Moreover, there is a lack of understanding
on the structures and relationships between different optimal
multi-robot path planning formulations (e.g., whether there
is a Pareto front for two different optimality criteria).

In this paper, we address these issues and systematically
study three optimality objectives: minimizing the total ar-
rival time, minimizing the makespan, and minimizing the
total distance. First, we show that these objectives have a
Pareto optimal structure for MPPp and MPPpr. That is, any
pair of these three objectives cannot be simultaneous opti-
mized for MPPp or MPPpr. These objectives are equivalent
for the PMG problem. Continuing onto the subject of com-

putational complexity, we show that computing an optimal
solution for any of the three objectives is NP-hard for PMG,
MPPp, and MPPpr. We point out that the NP-hardness re-
sults without rotations do not carry over to the case that al-
lows rotations because rotations may introduce better opti-
mal solutions that can be computed efficiently.

Problem Formulation
Multi-robot path planning on graphs with parallel
moves and rotations1

Let G = (V,E) be a connected, undirected, simple graph
with vertex set V = {vi} and edge set E = {(vi, vj)}. Let
R = {r1, . . . , rn} be a set of robots that move with unit
speeds along the edges of G, with initial and goal locations
on G given by the injective maps xI , xG : R → V , respec-
tively. A path is a map pi : Z+ → V . A path pi is feasible for
a robot ri if it satisfies the following properties: (1) pi(0) =
xI(ri), (2) for each i, there exists a smallest ti ∈ Z+ such
that pi(ti) = xG(ri), (3) for any t ≥ ti, pi(t) ≡ xG(ri),
and (4) for any 0 ≤ t < ti, (pi(t), pi(t + 1)) ∈ E or
pi(t) = pi(t + 1) (if pi(t) = pi(t + 1), robot ri stays at
vertex pi(t) between the time steps t and t+ 1). We say that
two paths pi, pj are in collision if there exists k ∈ Z+ such
that pi(t) = pj(t) or (pi(t), pi(t + 1)) = (pj(t + 1), pj(t)).

Problem (MPPpr). Given (G,R, xI , xG), find a set of
paths P = {p1, . . . , pn} such that pi’s are feasible paths for
respective robots ri’s and no two paths pi, pj are in collision.

Synchronized rotations of robots along fully occupied cy-
cles distinguishe MPPpr from the majority of previously
studied multi-robot path planning problems. In an MPPpr
instance, even when the number of robots equals the num-
ber of vertices, robots may still be able to move. A simple
feasible example here is n robots on an n-cycle, with each
robot having the left (assuming an orientation of the cycle in
the plane) adjacent vertex as its goal.

Optimality
We examine three common objectives in optimal multi-robot
path planning: minimizing the makespan (last arrival time),
minimizing the total arrival time, and minimizing the total
distance. Formally, let P = {p1, . . . , pn} be an arbitrary so-
lution to a fixed MPPpr instance. For a path pi ∈ P , len(pi)
denotes the length of the path pi, which is incremented by
one each time when the robot ri passes an edge. A robot,
following pi, may visit the same edge multiple times. Recall
that ti denotes the arrival time of robot ri.

Objective 1 (Minimum Total Arrival Time). Compute a
path set P that minimizes

∑n
i=1 ti.

Objective 2 (Minimum Makespan). Compute a path set P
that minimizes max1≤i≤n ti.

Objective 3 (Minimum Total Distance). Compute a path set
P that minimizes

∑n
i=1 len(pi).

1We only provide a full description of MPPpr here. For com-
plete formulations of PMG and MPPp, see (Kornhauser, Miller,
and Spirakis 1984; Surynek 2010).

For a PMG problem with a single unoccupied vertex,
these objectives are all equivalent because only one robot
can move in each time step. Therefore, the NP-hardness re-
sult from (Goldreich 1984) implies the following.
Lemma 1. Computing a minimum total arrival time, min-
imum makespan, or minimum total distance solution for a
PMG problem is NP-hard.

The decision versions of the opitmal MPPpr problems are
defined as follows.

MTATMPP (Minimum Total Arrival Time MPPpr)
INSTANCE: An instance of MPPpr, and k ∈ Z.
QUESTION: Is there a solution path set P with a total arrival
time no more than k?

M3PP (Minimum Makespan MPPpr)
INSTANCE: An instance of MPPpr, and k ∈ Z.
QUESTION: Is there a solution path set P with a makespan
no more than k?

MTDMPP (Minimum Total Distance MPPpr)
INSTANCE: An instance of MPPpr, and k ∈ Z.
QUESTION: Is there a solution path set P with a total path
distance no more than k?

The Pareto Optimal Structure
In this section, we show that in general, it is impossible to
simultaneously optimize multiple objectives for MPPp and
MPPpr. This is true for every pair from Objectives 1-3. Since
the incompatibility proof for Objectives 2 and 3 was given in
(Yu and LaValle 2013), we show Pareto optimal structures
for the other two pairing of the three objectives. For each
pair, we provide an infinite family of instances on which the
two objectives are optimized by different solutions.
Proposition 2. For MPPp and MPPpr, optimality cannot
always be simultaneously achieved for minimum makespan
and minimum total arrival time.

2

1

2

1

3

3

Figure 1: An instance in which the graph is a single cycle.
Discs with solid borders are the start locations of robots 1-
3 (as numbered) and discs with dotted borders are the goal
locations of robots 1-3.

PROOF. In Fig. 1, the start and goal vertices of robots 1-3 are
as marked. Let the distance between the consecutive num-
bered discs on the left side of the oval be one each and let
the distance of the right path (between robot 3’s vertex and
2’s goal) be x ≥ 1. Clearly, optimal solutions require that all
robots move in the same (clockwise or counterclockwise) di-
rection until they reach their goals. If all robots move in the
clockwise direction, the cost vector for makespan and total
arrival time is (x+1, 2x+3). The cost vector is (x+4, x+12)
if the robots move in the counterclockwise direction. Thus,
a clockwise move always yields the solution with minimum

makespan. However, when x > 9, the solution correspond-
ing to counterclockwise movements has a smaller total ar-
rival time.

Proposition 3. For MPPp and MPPpr, optimality cannot
always be simultaneously achieved for minimum total ar-
rival time and minimum total distance.

2

1

2

1

3

3

4

4

Figure 2: The start locations of robots 1-4 are marked with
discs having solid borders (as numbered). Their goals are the
numbered discs with dotted borders.

PROOF. In Fig. 2, the start and goal locations of robots 1-
4 are as marked. The distance between any adjacent pair of
nodes (discs, black dots) is one. The solution with minimum
total arrival time sends robots 1-3 through solid paths on the
left and robot 4 through the dotted path on the right. This
yields a total arrival time of 3 + 4 + 5 + 4 = 16 and a total
distance of 3 + 3 + 3 + 4 = 13. On the other hand, the
solution with minimum total distance sends all robots from
the left path, which yields a total arrival time of 18 and a total
distance of 12. By extending the lengths of the two vertical
edges in the middle, we get an infinite family of examples.

Intractability of MTATMPP and M3PP
Unlike finding feasible solutions, solving optimal versions
of MPPpr appears to be intractable in general. In this sec-
tion, we provide evidence to this claim by showing that
MTATMPP and M3PP are NP-hard. We give a mini-
mal and direct reduction from 3SAT (Garey and Johnson
1979) that works for both problems.

Theorem 4. MTATMPP is NP-hard.

PROOF We reduce 3SAT to MTATMPP. Let (X,C)
be an arbitrary instance of 3SAT with |X| = n vari-
ables x1, . . . , xn and |C| = m clauses c1, . . . , cm, in which
cj = y1j ∨ y2j ∨ y3j . Without loss of generality, we may as-
sume that the set of all literals, ykj ’s, contain both unnegated
and negated form of each variable xi.

From the 3SAT instance, an MTATMPP instance is
constructed as follows. For each variable xi, two paths of
length m + 2 each, jointed at the end, are added (e.g. the
four horizontal strips in the middle of Fig. 3). At the left end
of the joined path, vertex vxi

, sits a robot rxi
, with its goal

vertex, v′xi
, at the right end. The robot can travel along either

of the two paths to reach its goal in m + 2 steps. Call these
two paths the i-th upper and lower paths.

Then, for each clause cj = y1j ∨ y2j ∨ y3j , add a robot rcj ,
sitting at a vertex vcj . The vertex vcj is connected to three
paths associated with the three variables corresponding to
cj’s three literals. If a literal is the unnegated (resp., negated)
form of variable xi, then vcj is connected to the i-th upper

(resp., lower) path at a vertex of distance j from vxi . For
example, if c1 = x1 ∨¬x3 ∨x4, then vc1 is connected to the
first upper, third lower, and fourth upper paths, all at vertices
of distance 1 from the left end of the “strips” (see Fig. 3).

x
1

v

x
4

v

c
1

v

c
2

v

c
3

v

c
1

v¶ c
2

v¶ c
3

v¶

x
2

v

x
3

v

x
1

v ¶

x
2

v ¶

x
3

v ¶

x
4

v ¶

Figure 3: An MPPpr instance constructed from the 3SAT
instance ({x1, x2, x3, x4}, {x1 ∨ ¬x3 ∨ x4,¬x1 ∨ x2 ∨
¬x4,¬x2 ∨ x3 ∨ x4}). The red vertices are the start vertices
and the blues one the goals.

After the clause structures are created, the goals for the
rcj ’s are added. For this purpose, a path of length m is added
(e.g. the leftmost path with blue vertices in Fig. 3), with the
left vertex being the goal for rc1 and the right vertex the goal
for rcm . The goal vertex for rcm , v′cm , is connected to all
vxi

’s, the start vertices of robots rxi
’s. Having constructed

an MPPpr instance, setting k = (n + m)(m + 2) fully de-
scribes an instance of MTATMPP. Fig. 3 gives the com-
plete graph for the MTATMPP instance constructed from
the 3SAT instance ({x1, x2, x3, x4}, {x1∨¬x3∨x4,¬x1∨
x2 ∨ ¬x4,¬x2 ∨ x3 ∨ x4}).

If the 3SAT instance is satisfiable, let x̃1, . . . , x̃n be an
assignment of the truth values to the variables. For each vari-
able xi, if x̃i is true (resp., false), then let robot rxi

take
the lower (resp., upper) path on its strip. The upper (resp.,
lower) path is then free to use for transporting the robots cor-
responding to the clauses, rcj ’s. All m + n robots can start
moving at time step zero and arrive at their desired goals at
time step m + 2. The total time is then (m + n)(m + 2).

On the other hand, if the MPPpr instance have a solution
with total arrival time (n+m)(m+2), then every robot must
start moving at time step zero, follow a shortest path, and
never stop until it reaches its goal. This forces every robot
rxi

to take either the upper or lower path on its own strip,
which prevents any robot rcj from using the same path in the
opposite direction. If robot rxi

uses the upper (resp., lower)
path, let x̃i = true (resp., false). The resulting assignment
x̃1, . . . , x̃n satisfies the 3SAT instance.

Corollary 5. M3PP is NP-hard.

PROOF. In the proof of Theorem 5, after the MPPpr instance
is created, setting k = m + 2 as the minimum makespan
produces a M3PP instance from the 3SAT instance. The
rest of the proof remains essentially the same.

In our many-one reduction, it is clear that rotations of
robots along cycles do not contribute to better paths. There-
fore, the reduction works for time optimal MPPp problem as

well. In particular, our proof greatly simplifies the NP-hard
proof of minimum makespan MPPp from (Surynek 2010).
Corollary 6. Finding a minimum total arrival time or a min-
imum makespan solution for MPPp is NP-hard.

The reduction illustrates one reason that makes finding
time optimal solutions hard: When multiple robots want to
travel in opposite directions on a few shared paths, it is
critical that the right paths are picked if time optimality
is sought. Moreover, our proof shows an even stronger in-
tractability result: Computing a time optimal solution is NP-
hard even when there are only two groups of robots (i.e., the
robots within each group are interchangeable).
Theorem 7. MTATMPP and M3PP remain NP-hard,
even when there are only two groups of robots.
PROOF. In the reduction from 3SAT, let the variable robots
belong to one group and the clause robots belong to another
group.

Intractability of MTDMPP
Unfortunately, the simple structure from Fig. 3 is not as
useful in proving the NP-hardness of MTDMPP because
there is no need for the robots to synchronize their move-
ments unless they are forced to. It is possible, however, to
force such a synchronization, as shown in (Ratner and War-
muth 1990), in which 2/2/4 SAT is reduced to the dis-
tance optimal (n2−1)-puzzle. 2/2/4 SAT is a specialized
version of the boolean satisfiability problem.

2/2/4 SAT
INSTANCE: An instance of the boolean satisfiability prob-
lem with m boolean variables and m clauses. Each clause
has exactly four literals and each variable appear four times
in the clauses, twice negated and twice unnegated.
QUESTION: Does the instance have a satisfiable assign-
ment?

2/2/4 SAT is NP-hard and has the property that given a
satisfying assignment, each clause has exactly two true liter-
als and two false literals (Ratner and Warmuth 1990). Once
rotation is allowed, the proof from (Ratner and Warmuth
1990) (or (Goldreich 1984)) no longer works because its
synchronization scheme depends on the fact that only robots
near the only unoccupied vertex may move.

Proof outline. To show that MTDMPP is NP-hard,
we adapt the construction from (Ratner and Warmuth 1990)
with some significant changes. To reduce proof complex-
ity, we will build an MPPpr instance such that all vertices
are occupied by robots. The essential idea behind the main
construct of the reduction (Fig. 6, to be introduced in detail
shortly) is to force the robots to go through a predetermined
“path” along the construct. If the robots are to deviate from
this path, significant extra distance cost will be incurred. On
the other hand, the construct ensures that the robots, follow-
ing the predetermined “path”, can reach the desired goals if
and only if the associated 2/2/4 SAT instance is solvable.

To build a new scheme for synchronizing robots’ move-
ments in an optimal solution, we need several gadgets. The
first gadget (see e.g., Fig. 4) allows distance optimal trans-
portation of three robots. In the structure, there are 2` + 2

r
1

r
2

r
`+3

r
2`+2

r
`+2

r
4

r
5

r
`+3

r
2`+2

r
`+2

r
3

r
5

r
4

r
3

r
2

r
1

r
`+1

r
`+1

Figure 4: A gadget for optimally transporting three robots in
the middle path. [top] Initial configuration of robots. [bot-
tom] The final configuration.

robots and r1, r2, r3 are the robots to be transported. The
starts and goals for these three robots may be temporary;
the starts and goals for all other robots are final. We call
such a gadget a forward path. In a forward path, each robot
must move at least a distance of ` to reach its goal. The gad-
get can only be joined to other structures at the two short
sides in such a way that all shortest paths between any robot
ri ∈ {r4, . . . , r2`+2} and its goal are within the forward
path. Furthermore, any path connecting ri and its goal with-
out using a long side of the forward path must have a dis-
tance at least 2`. It is clear that the optimal total distance for
all robots, including r1-r3, is 2`2 + 2`.

Proposition 8. Transporting multiple groups (one group
must reach the right end before another group can be trans-
ported) of robots through a forward path incurs an extra dis-
tance of Ω(`) for robots r4, . . . , r2`+2.

PROOF SKETCH. Each group of robots to be transported
must use a long side of a forward path and pushes all other
robots on the long side through with them. It can be checked
(simple but tedious case analysis and counting are involved)
that intermediate configurations between transporting differ-
ent groups of robots will require robots r4, . . . , r2`+r to de-
viate from optimal paths by at least Θ(`) in total.

Proposition 9. Transporting a single group of more than
three robots through a forward path incurs an extra distance
of Ω(`) for robots r4, . . . , r2`+2.

PROOF SKETCH. When more than three robots are in a for-
ward path at the same time, some robot(s) in r4, . . . , r2`+4

cannot stay on the forward path and must travel extra dis-
tance. This induces an extra cost of at least Θ(`).

r
4

r
1

r
2

r
2

r
3

r
1

r
4

r
3

Figure 5: A gadget for synchronizing the movements of
robots. [top] Initial configuration. [bottom] Final configura-
tion.

The second gadget given in Fig. 5 consists of a single cy-
cle (formed by two paths joined at the ends) that will be
connected to other gadgets at the two end vertices on the left
and right. The length of the cycle is 8`. Denote such a gad-
get a backward path. The function of a backward path is to
push r1 into the cycle and r2 out of the cycle as a synchro-
nization mechanism. Every robot in the middle of the cycle
have its goal one vertex to its left or right as indicated by
the arrows. An optimal solution for a backward path is to ro-
tate all robots in the direction of the arrows, which yields a
total distance of 8`. Before the rotation, r1 may come from
elsewhere to its start location and after the rotation, r2 may
move to elsewhere. All other start and goal locations are fi-
nal. The optimal cost for transporting all robots including
r1, r2 is 8`. It is clear that if r1, r2 are not moved at the
same time, then an extra cost of at least 4` is incurred. Note
that moving a robot through a backward path incurs Ω(`2)
cost to the robots on the path.

c1

c2

cm

x1 x1

x2

xm xm

x2

FCTC

p
1

p2

p2¶

pm¶

pm

p
1

p2

p2¶

pm¶

pm

q
1

q
1
¶

q
2
¶

q
2

qm

q
1

q
1
¶

q
2
¶

q
2

qm

Figure 6: Reduction of 2/2/4 SAT to MTDMPP.

The third and the main construct (similar to that used in
(Ratner and Warmuth 1990)) is given in Fig. 6, constructed
from a 2/2/4 SAT instance with m variables. In the con-
struct, each solid edge (pi, qj , pi, qj) represents a forward
path and each dotted edge (p′i, q

′
i, p
′
i, q
′
i) a backward path.

On the top half (above the squares marked TC and FC)
there are m diamond structures. We call these the variable
diamonds. The details of a variable diamond is given in Fig.
7. The start locations for robots ai-fi and xi1, xi2, xi1, xi2

(the robots representing the unnegated and negated liter-
als) are given in the figure. The goal locations of bi, ci are
start locations of xi1, xi2, respectively. Same goes for ei, fi.
The literals will be moved out of the variable diamond. The
goals of ai, di are in the next variable diamond (the goals of
ai−1, di−1 are marked as dotted circles in Fig. 7).

The squares on the sides, TC and FC, each contains a
strip of 3m vertices and robots. TC has the structure given
in Fig. 8; the structure of FC is similar. On the bottom half
of Fig. 6 there are m clause nodes, the structure of the j-

xi1 xi1

ai

c i

di

fi

TC FC

ai-1

xi2 xi2a
1

b1
c1

e1
f1

d1

di-1

bi e i

p i¶

p i p i

p i¶

Figure 7: The structure of a variable diamond. The top of the
variable diamond for x1 is slightly different and is shown in
the bottom right corner.

p
1

p2¶pm
pm¶

q
1q

1
¶q

m-1¶
q
m

Figure 8: The gadget for temporarily hosting the true literals.

th node is given in Fig. 9. These clause nodes host the goal
locations for the 4m literals (these are yj1-yj4). The start
locations of gj , hj and goal locations of gj−1, hj−1 are as
marked. The goal location of gm−1 will be given shortly;
the goal of hm−1 is an arbitrary unused location in the last
(m-th) clause node.

TC FC
yj1

yj2 yj4

yj3

g j hjg j-1 hj-1

p i¶

p i q i

q j¶

Figure 9: The structure of the clause node j.

Finally, the backward path connecting the last clause node
and the first variable diamond is given in Fig. 10, which
specifies the start location of d1 and goal location of gm−1.
So far the start and goal locations of almost all robots are
specified, with the exception of some robots in the 3 × 3
grids, TC, FC, and near the ends of backward paths. The
goals for these robots can be set arbitrarily as long as they
remain local with respect to their start location (i.e. within a
constant distance) and consistent.

So far, a full MPPpr problem has been constructed from
the 2/2/4 SAT instance. Recall that we require a forward
path to be joined to the rest of the graph such that for an
arbitrary robot ri ∈ {r4, . . . , r2`+2} on the forward path, a
path connecting ri and its goal must have a distance of 2`
or more if it does not pass through the forward path itself. It
can be checked that this is satisfied by the MPPpr instance.
We set ` = m4.

gm-1

d1

Figure 10: The backward path connecting the last clause
node and the first variable diamond.

Lemma 10. If an instance of 2/2/4 SAT is satisfiable,
then the corresponding MPPpr problem has a solution with
a total distance of 16m9 + 48m5 − 24m4 + O(m2).
PROOF. Suppose that the 2/2/4 SAT instance is satisfi-
able. Let x̃1, . . . , x̃m be a satisfying assignment to the vari-
ables x1, . . . , xm. The paths for taking the robots to their
goals are described below.

The first moves take a1 to TC. If x̃1 is true, a1, b1, c1
can be transported through the top left forward path in the
first variable diamond. If x̃1 is false, using a constant num-
ber of moves (see Proposition 5 in (Yu and LaValle 2013)),
a1 can be exchanged with the robot at the top right corner
of the top 3 × 3 grid of the first variable diamond (i.e., on
top of e1, f1). Such local rearrangements will be assumed
from now on without explicitly stating so. Then a1, e1, f1
will take the top right forward path. Without loss of general-
ity, assume that the right path is taken. Once a1, e1, f1 get to
the right 3× 3 grid in the first variable diamond, e1, f1 stay
and a1, x11, x12 can be moved to the bottom 3 × 3 grid of
the variable diamond. They can then be moved to TC using
the left forward path.

Once a1 is in TC, it can be used to free a2 in p′2. In-
ductively, all the 2m literals that are set to true can be col-
lected to TC along with am. These literals can then be
distributed to the clause nodes, two at a time (including
am, g1, . . . , gm−1, three robots will actually be transported
at a time). Since x̃1, . . . , x̃m is a satisfying assignment, TC
contains the robots such that two of which have goals in each
clause node. Once gm−1 gets to the last clause node, it can
then free d1 on the top, and the right half of the paths can be
“traversed” so that all robots can reach their desired goals.

There are 8m forward paths and 4m− 3 backward paths.
These induce a total distance cost of 8m(2`2 + 2`) + (4m−
3)(8`) = 16m9 +48m5−24m4, plus some local rearrange-
ments. These local rearrangements can be performed with a
total distance cost of O(m2) (again, see Proposition 5 in (Yu
and LaValle 2013)).
Lemma 11. If the MPPpr problem reduced from an
2/2/4 SAT instance has a solution with a total distance
of 16m9 + 48m5 − 24m4 + O(m2), the 2/2/4 SAT in-
stance is satisfiable.
PROOF. Through straightforward counting, it can be
checked that the least amount of distance connecting the
start and goal locations of the robots is 16m9 + 48m5 −
24m4 + O(m2). For such a total distance to be achievable,
the forward and backward paths must be followed in a pat-
tern similar to that from the proof of Lemma 10 because if
not, an extra cost of Ω(`) = Ω(m4) is incurred by Proposi-
tions 8, 9 and properties of backward paths. This means that

a forward path can only be used to transport a single group
of no more than three robots and robots on a backward path
can only move once (excluding robots at the two end ver-
tices). Otherwise, the Ω(m4) extra cost will take the total
distance cost to 16m9 + 48m5 − 24m4 + Ω(m4), which is
strictly larger than 16m9 +48m5−24m4 +Ω(m4) for large
enough m.

Suppose that a feasible solution path set with a total dis-
tance 16m9 + 48m5 − 24m4 +O(m2) exists. At the begin-
ning, no backward path can be taken due to the synchroniza-
tion/locking mechanism. For example, the backward path
connecting the last clause node and the first variable dia-
mond cannot be used because gm−1 is not in the last clause
node. This suggests that the only possible first move (with-
out incurring an Ω(m4) extra cost) is to move three robots,
a1 with c1, d1 or e1, f1, along the top left or top right for-
ward path in the first variable diamond (since a1-f1 must
all travel down and no forward path can transport more than
three a time or multiple groups, each forward path must take
three robots). Following this argument, 2m of the 4m literal
robots must go to TC and the other 2m must go to FC.
The robots going to FC must have one pair of literals (ei-
ther unnegated or negated, but not both) per variable. These
robots then must end in the clause nodes with each clause
node getting two literals from TC and two from FC. Set-
ting the literals corresponding to the literal robots passing
through TC yields a good assignment.

Lemmas 10 and 11 prove to the following theorem.

Theorem 12. MTDMPP is NP-hard, even if all vertices
are occupied by robots.

PROOF. After the MPPpr instance is constructed, set k =

16m9 + 48m5 − 24m4 + m3 proves the claim for large
enough m.

General Intractability of Optimal Multi-robot
Path Planning Problems on Graphs

We conclude this paper with the following main result.

Theorem 13. Computing a minimum total arrival time, a
minimum makespan, or a minimum total distance solution is
NP-complete for PMG,MPPp, and MPPpr.

PROOF. Lemma 1 covers the PMG part. Theorem 4, Corol-
lary 5, and Theorem 12 cover MPPpr. It is also clear that
Theorem 4 and Corollary 5 generalizes to MPPp without
modification because the optimal paths do not use syn-
chronous rotations of robots. We are left to show that com-
puting a distance optimal solution for MPPp is NP-hard.
This is again covered by the distance optimal result from
(Ratner and Warmuth 1990) because parallel moves do not
shorten the total distance traveled.

These problems are NP-complete because PMG, MPPp,
and MPPpr are in NP (Kornhauser, Miller, and Spirakis
1984; Yu 2012).

References
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Goldreich, O. 1984. Finding the shortest move-sequence in
the graph-generalized 15-puzzle is np-hard. Laboratory for
Computer Science, Massachusetts Institute of Technology,
unpublished manuscript.
Goraly, G., and Hassin, R. 2010. Multi-color pebble motion
on graph. Algorithmica 58:610–636.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Co-
ordinating pebble motion on graphs, the diameter of per-
mutation groups, and applications. In Proceedings of the
25th Annual Symposium on Foundations of Computer Sci-
ence (FOCS ’84), 241–250.
Loyd, S. 1959. Mathematical Puzzles of Sam Loyd. New
York: Dover.
Ratner, D., and Warmuth, M. 1990. The (n2 − 1)-puzzle
and related relocation problems. Journal of Symbolic Com-
putation 10:111–137.
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. Journal of Artificial Intelligence
Research 31:497–542.
Standley, T., and Korf, R. 2011. Complete algorithms for co-
operative pathfinding problems. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence, 668–673.
Story, E. W. 1879. Note on the ‘15’ puzzle. American
Journal of Mathematics 2:399–404.
Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In The Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10), 1261–
1263.
Yu, J., and LaValle, S. M. 2012. Multi-agent path planning
and network flow. In The Tenth International Workshop on
Algorithmic Foundations of Robotics.
Yu, J., and LaValle, S. M. 2013. Planning optimal paths
for multiple robots on graphs. In Proceedings IEEE Inter-
national Conference on Robotics & Automation. to appear.
Yu, J. 2012. Diameters of permutation groups on graphs
and linear time feasibility test of pebble motion problems.
arXiv:1205.5263.

